Blood Sugar Monitoring

Blood Sugar Monitoring Lab Tests and health information

Find accurate glucose blood tests and advanced blood sugar monitoring online with Ulta Lab Tests, and get affordable, accurate blood work with confidential results in 24 to 48 hours, so order today!


Name Matches




Dr. Weatherby’s Additional biomarkers for Blood Sugar Dysregulation - Use with Blood Chemistry Analysis Standard Panel


The Blood Sugar / Diabetes 3 panel is a comprehensive test that can help diagnose insulin-dependent diabetes mellitus (IDDM), assess the risk for development of IDDM, and predict the onset of IDDM.

The panel provides a complete picture of your blood sugar and diabetes status. The panel includes tests for adiponectin, glucose, glutamic acid decarboxylase-65 antibody, hemoglobin A1c (HgbA1C), and IA-2 antibody. Adiponectin is a hormone that helps regulate blood sugar. Glucose is a sugar that is produced by the body and used for energy. The glutamic acid decarboxylase-65 antibody is an important marker for type 1 diabetes. Hemoglobin A1c (HgbA1C) is a measure of how well your body is controlling blood sugar over time. IA-2 antibody is a marker for type 1 diabetes.

These tests provide important information that can assist you and your healthcare practitioner in managing your diabetes and controlling your blood sugar levels. Get peace of mind and a deeper understanding of your health with this essential blood sugar/diabetes 3-panel test.


Cardio IQ® Insulin Resistance Panel with Score

Includes

  • Insulin, Intact, LC/MS/MS
  • C-Peptide, LC/MS/MS
  • Insulin Resistance Score

Patient Preparation

  • Overnight fasting is required

Clinical Significance

The determination of insulin in serum is primarily used for the diagnosis of glycemic disorders in diabetic and pre-diabetic patients in the assessment of insulin resistant syndromes. Insulin is synthesized by the pancreatic beta cell as a precursor, proinsulin. Proinsulin is processed to insulin and C-peptide, a contiguous peptide between the insulin A and B chains, as it passes through the cell. The C-peptide in the proinsulin ensures correct folding and processing of proinsulin as it passes through the cell. Both insulin and C-peptide are released together from the beta cells in response to increased glucose levels. Because of differences in half-life and hepatic clearance, peripheral blood levels of C-peptide and insulin are no longer equimolar but remain highly correlated. A steady-state plasma glucose test in individuals undergoing an insulin suppression test to assess insulin resistance found that the combination of insulin and C-peptide was a better indicator of insulin resistance than either one individually.

 

 


Cardio IQ® Diabetes and ASCVD Risk Panel with Scores - Includes:  Cardio IQ® Glucose; Cardio IQ® Hemoglobin A1c; Cardio IQ® Cholesterol, Total; Cardio IQ® HDL Cholesterol; Cardio IQ® Triglycerides; Cardio IQ® Non-HDL and Calculated Components; Cardio IQ® Risks and Personal Factors

If Triglyceride is >400 mg/dL, Cardio IQ® Direct LDL will be performed at an additional charge (CPT code(s): 83721).

Clinical Significance

The increasing prevalence of obesity has led to an epidemic of diabetes mellitus and related complications, including ASCVD. Prediction of the risk of ASCVD and of developing diabetes in the Cardio IQ® lab report will simplify and improve the communication of those risks to patients.

This panel provides the 10-year and lifetime risk of ASCVD events and the 8-year risk of developing diabetes. The lipid panel results will aid in the assessment of ASCVD. Assessment of 10-year risk of a first atherosclerotic cardiovascular (ASCVD) event is recommended by the 2013 ACC/AHA Guidelines on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults. These guidelines recommend initiating statin therapy based on 10-year ASCVD risk score. Assessment of 8-year risk of developing diabetes mellitus is based on laboratory test results with anthropomorphic data and family history. This algorithm was developed in the Framingham cohort, and is intended to aid in the identification of patients at risk for developing diabetes, permitting pharmacological or lifestyle interventions.

IMPORTANT: For risk calculations to be performed, the following patient-specific information must be provided and recorded at the time of specimen collection:

  • Age: Years 
  • Gender: M (for male) or F (for female) 
  • Height Feet: Feet 
  • Height Inches: Inches 
  • Weight: lbs 
  • Race-African American: Y (for yes) or N (for no) 
  • Systolic Blood Pressure: mmHg
  • Diastolic Blood Pressure: mmHg
  • Treatment for High B.P.: Y (for yes) or N (for no) 
  • Diabetes Status: Y (for yes) or N (for no)
  • Parental History of Diab: Y (for yes) or N (for no) 
  • Smoking Status: Y (for Yes) or N (for no)

Cardio IQ® Diabetes Risk Panel with Score - 

Includes
Cardio IQ® Glucose; Cardio IQ® Hemoglobin A1c; Cardio IQ® Cholesterol, Total; Cardio IQ® HDL Cholesterol; Cardio IQ® Triglycerides; Cardio IQ® Non-HDL and Calculated Components; Cardio IQ® 8 Year Diabetes Risk

If Triglyceride is >400 mg/dL, Cardio IQ® Direct LDL will be performed at an additional charge (CPT code(s): 83721).

Clinical Significance

Permit the assessment of serum glucose levels and lipid levels and the prediction of the 8-year future risk of developing diabetes mellitus in patients without diabetes mellitus.

• Assess risk for developing type 2 diabetes mellitus
• Identify lifestyle interventions and/or pharmacotherapy
• This test provides an 8-year risk of developing type 2 diabetes

Type 1 diabetes mellitus is defined as a deficiency of insulin secretion. Type 2 diabetes, which accounts for greater than 90% of all diabetes cases, is caused by a combination of insulin resistance and an inadequate compensatory insulin secretion.

Type 2 diabetes frequently goes undiagnosed, because it has no classic symptoms of diabetes and it progresses slowly from a pre-diabetic state. 

The U.S. Centers for Disease Control and Prevention estimates that 37% of individuals that are greater than 20 years old and approximately  half of those are greater than 65 years old have pre-diabetes. These individuals are at high risk for progression to type 2 diabetes and are candidates for preventive therapy that include lifestyle modification, such as weight  loss, increased physical activity, and medication.

IMPORTANT: For risk calculations to be performed, the following patient-specific information must be provided and recorded at the time of specimen collection:

  • Age: Years 
  • Gender: M (for male) or F (for female) 
  • Height Feet: Feet 
  • Height Inches: Inches 
  • Weight: lbs 
  • Race-African American: Y (for yes) or N (for no) 
  • Systolic Blood Pressure: mmHg
  • Diastolic Blood Pressure: mmHg
  • Treatment for High B.P.: Y (for yes) or N (for no) 
  • Diabetes Status: Y (for yes) or N (for no)
  • Parental History of Diab: Y (for yes) or N (for no) 
  • Smoking Status: Y (for Yes) or N (for no)

Description: A Comprehensive Metabolic Panel or CMP is a blood test that is a combination of a Basic Metabolic Panel, a Liver Panel, and electrolyte panel, and is used to screen for, diagnose, and monitor a variety of conditions and diseases such as liver disease, diabetes, and kidney disease. 

Also Known As: CMP, Chem, Chem-14, Chem-12, Chem-21, Chemistry Panel, Chem Panel, Chem Screen, Chemistry Screen, SMA 12, SMA 20, SMA 21, SMAC, Chem test

Collection Method: 

Blood Draw 

Specimen Type: 

Serum 

Test Preparation: 

9-12 hours fasting is preferred. 

When is a Comprehensive Metabolic Panel test ordered:  

A CMP is frequently requested as part of a lab test for a medical evaluation or yearly physical. A CMP test consists of many different tests that give healthcare providers a range of information about your health, including liver and kidney function, electrolyte balance, and blood sugar levels. To confirm or rule out a suspected diagnosis, abnormal test results are frequently followed up with other tests that provide a more in depth or targeted analysis of key areas that need investigating. 

What does a Comprehensive Metabolic Panel blood test check for? 

The complete metabolic panel (CMP) is a set of 20 tests that provides critical information to a healthcare professional about a person's current metabolic status, check for liver or kidney disease, electrolyte and acid/base balance, and blood glucose and blood protein levels. Abnormal results, particularly when they are combined, can suggest a problem that needs to be addressed. 

The following tests are included in the CMP: 

  • Albumin: this is a measure of Albumin levels in your blood. Albumin is a protein made by the liver that is responsible for many vital roles including transporting nutrients throughout the body and preventing fluid from leaking out of blood vessels. 

  • Albumin/Globulin Ratio: this is a ratio between your total Albumin and Globulin  

  • Alkaline Phosphatase: this is a measure of Alkaline phosphatase or ALP in your blood. Alkaline phosphatase is a protein found in all body tissues, however the ALP found in blood comes from the liver and bones. Elevated levels are often associated with liver damage, gallbladder disease, or bone disorder. 

  • Alt: this is a measure of Alanine transaminase or ALT in your blood. Alanine Aminotransferase is an enzyme found in the highest amounts in the liver with small amounts in the heart and muscles. Elevated levels are often associated with liver damage. 

  • AST: this is a measure of Aspartate Aminotransferase or AST. Aspartate Aminotransferase is an enzyme found mostly in the heart and liver, with smaller amounts in the kidney and muscles. Elevated levels are often associated with liver damage. 

  • Bilirubin, Total: this is a measure of bilirubin in your blood. Bilirubin is an orange-yellowish waste product produced from the breakdown of heme which is a component of hemoglobin found in red blood cells. The liver is responsible for removal of bilirubin from the body. 

  • Bun/Creatinine Ratio: this is a ratio between your Urea Nitrogen (BUN) result and Creatinine result.  

  • Calcium: this is a measurement of calcium in your blood. Calcium is the most abundant and one of the most important minerals in the body as it essential for proper nerve, muscle, and heart function. 

  • Calcium: is used for blood clot formation and the formation and maintenance of bones and teeth. 

  • Carbon Dioxide: this is a measure of carbon dioxide in your blood. Carbon dioxide is a negatively charged electrolyte that works with other electrolytes such as chloride, potassium, and sodium to regulate the body’s acid-base balance and fluid levels.  

  • Chloride: this is a measure of Chloride in your blood. Chloride is a negatively charged electrolyte that works with other electrolytes such as potassium and sodium to regulate the body’s acid-base balance and fluid levels. 

  • Creatinine: this is a measure of Creatinine levels in your blood. Creatinine is created from the breakdown of creatine in your muscles and is removed from your body by the kidneys. Elevated creatinine levels are often associated with kidney damage. 

  • Egfr African American: this is a measure of how well your kidneys are functioning. Glomeruli are tiny filters in your kidneys that filter out waste products from your blood for removal while retaining important substances such as nutrients and blood cells. 

  • Egfr Non-Afr. American: this is a measure of how well your kidneys are functioning. Glomeruli are tiny filters in your kidneys that filter out waste products from your blood for removal while retaining important substances such as nutrients and blood cells. 

  • Globulin: this is a measure of all blood proteins in your blood that are not albumin. 

  • Glucose: this is a measure of glucose in your blood. Glucose is created from the breakdown of carbohydrates during digestion and is the body’s primary source of energy. 

  • Potassium: this is a measure of Potassium in your blood. Potassium is an electrolyte that plays a vital role in cell metabolism, nerve and muscle function, and transport of nutrients into cells and removal of wastes products out of cells. 

  • Protein, Total: this is a measure of total protein levels in your blood. 
    Sodium: this is a measure of Sodium in your blood. Sodium is an electrolyte that plays a vital role in nerve and muscle function. 

  • Urea Nitrogen (Bun): this is a measure of Urea Nitrogen in your blood, also known as Blood UreaNitrogen (BUN). Urea is a waste product created in the liver when proteins are broken down into amino acids. Elevated levels are often associated with kidney damage. 

Lab tests often ordered with a Comprehensive Metabolic Panel test: 

  • Complete Blood Count with Differential and Platelets
  • Iron and Total Iron Binding Capacity
  • Lipid Panel
  • Vitamin B12 and Folate
  • Prothrombin with INR and Partial Thromboplastin Times
  • Sed Rate (ESR)
  • C-Reactive Protein

Conditions where a Comprehensive Metabolic Panel test is recommended: 

  • Diabetes
  • Kidney Disease
  • Liver Disease
  • Hypertension

Commonly Asked Questions: 

How does my health care provider use a Comprehensive Metabolic Panel test? 

The comprehensive metabolic panel (CMP) is a broad screening tool for assessing organ function and detecting diseases like diabetes, liver disease, and kidney disease. The CMP test may also be requested to monitor known disorders such as hypertension and to check for any renal or liver-related side effects in persons taking specific drugs. If a health practitioner wants to follow two or more separate CMP components, the full CMP might be ordered because it contains more information. 

What do my Comprehensive Metabolic Panel test results mean? 

The results of the tests included in the CMP are usually analyzed together to look for patterns. A single abnormal test result may indicate something different than a series of abnormal test findings. A high result on one of the liver enzyme tests, for example, is not the same as a high result on several liver enzyme tests. 

Several sets of CMPs, frequently performed on various days, may be examined to gain insights into the underlying disease and response to treatment, especially in hospitalized patients. 

Out-of-range findings for any of the CMP tests can be caused by a variety of illnesses, including kidney failure, breathing issues, and diabetes-related complications, to name a few. If any of the results are abnormal, one or more follow-up tests are usually ordered to help determine the reason and/or establish a diagnosis. 

Is there anything else I should know? 

A wide range of prescription and over-the-counter medications can have an impact on the results of the CMP's components. Any medications you're taking should be disclosed to your healthcare professional. Similarly, it is critical to provide a thorough history because many other circumstances can influence how your results are interpreted. 

What's the difference between the CMP and the BMP tests, and why would my doctor choose one over the other? 

The CMP consists of 14 tests, while the basic metabolic panel (BMP) is a subset of those with eight tests. The liver (ALP, ALT, AST, and bilirubin) and protein (albumin and total protein) tests are not included. If a healthcare provider wants a more thorough picture of a person's organ function or to check for specific illnesses like diabetes or liver or kidney disease, he or she may prescribe a CMP rather than a BMP. 

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.

Please note the following regarding BUN/Creatinine ratio: 

The lab does not report the calculation for the BUN/Creatinine Ratio unless one or both biomarkers’ results fall out of the published range. 

If you still wish to see the value, it's easy to calculate. Simply take your Urea Nitrogen (BUN) result and divide it by your Creatinine result.  

As an example, if your Urea Nitrogen result is 11 and your Creatinine result is 0.86, then you would divide 11 by 0.86 and get a BUN/Creatinine Ratio result of 12.79. 


Diabetes Risk Panel with Score

• Assess risk for developing type 2 diabetes mellitus
• Identify lifestyle interventions and/or pharmacotherapy
• This test provides an 8-year risk of developing type 2 diabetes
Type 1 diabetes mellitus is defined as a deficiency of insulin secretion. Type 2 diabetes, which accounts for greater than 90% of all diabetes cases, is caused by a combination of insulin resistance and an inadequate compensatory insulin secretion.

Type 2 diabetes frequently goes undiagnosed, because it has no classic symptoms of diabetes and it progresses slowly from a pre-diabetic state. 
The U.S. Centers for Disease Control and Prevention estimates that 37% of individuals that are greater than 20 years old and approximately  half of those are greater than 65 years old have pre-diabetes. These individuals are at high risk for progression to type 2 diabetes and are candidates for preventive therapy that include lifestyle modification, such as weight  loss, increased physical activity, and medication.

IMPORTANT: For risk calculations to be performed, the following patient-specific information must be provided and recorded at the time of specimen collection:

  • Age: Years 
  • Gender: M (for male) or F (for female) 
  • Height Feet: Feet 
  • Height Inches: Inches 
  • Weight: lbs 
  • Race-African American: Y (for yes) or N (for no) 
  • Systolic Blood Pressure: mmHg
  • Diastolic Blood Pressure: mmHg
  • Treatment for High B.P.: Y (for yes) or N (for no) 
  • Diabetes Status: Y (for yes) or N (for no)
  • Parental History of Diab: Y (for yes) or N (for no) 
  • Smoking Status: Y (for Yes) or N (for no)

 


Description: A Urinalysis complete test is a urine test that is used to screen for, diagnose, and monitor a variety of conditions and diseases urinary tract infections and kidney disorders.

Also Known As: Urine Test, Urine Analysis Test, UA Test, urine microscopic examination Test, Urinalysis Test, Complete Urinalysis Test

Collection Method: Urine Collection

Specimen Type: Urine

Test Preparation: No preparation required

When is a Urinalysis Complete test ordered?

A urinalysis test may be ordered when a person undergoes a routine wellness examination, is admitted into a hospital, will have surgery, or is having a prenatal checkup.

When a person visits a doctor with symptoms of a urinary tract infection or another urinary system ailment, such as kidney disease, a urinalysis will almost certainly be prescribed. The following are some possible signs and symptoms:

  • Pain in the abdomen
  • Backache
  • Urination that is painful or occurs frequently
  • Urine with blood in it

Testing may also be conducted at regular intervals to track the progress of a condition.

What does a Urinalysis Complete test check for?

A urinalysis is a series of examinations done on urine that are physical, chemical, and microscopic. The tests identify and/or measure a number of elements in the urine, including cells, cellular fragments, and microbes. These elements include byproducts of healthy and unhealthy metabolism.

Urine is produced by the kidneys, two fist-sized organs located on either side of the spine near the base of the rib cage. The kidneys help the body regulate its water balance, filter wastes from the blood, and store proteins, electrolytes, and other molecules for later use. To get rid of everything unnecessary, urine travels from the kidneys to the ureters, bladder, and urethra before exiting the body. The color, amount, concentration, and content of urine will change slightly every time a person urinates due to the varied elements in urine, despite the fact that pee is normally yellow and clear.

By screening for components in the urine that aren't typically present and/or monitoring aberrant levels of specific substances, many illnesses can be caught early on. Glucose, bilirubin, protein, red and white blood cells, crystals, and germs are among examples. They could be present because of the following reasons:

  • The body responds to an elevated amount of the substance in the blood by attempting to remove the excess through urine.
  • There is a problem with the kidneys.
  • As with bacteria and white blood cells, there is a urinary tract infection present.

Three separate phases make up a full urinalysis:

  • The color and clarity of the urine are assessed using a visual examination.
  • Chemical examination, which determines the concentration of urine and tests for roughly 9 chemicals that provide useful information about health and disease.
  • Microscopic inspection that identifies and counts the different types of cells, casts, crystals, and other components found in urine, such as bacteria and mucus.

When abnormal results are found, or if a healthcare provider requests it, a microscopic analysis is usually performed.

It may be essential to repeat the test if the findings of a urinalysis are abnormal, and further other urine and blood tests may be needed to help establish a diagnosis, if the results are abnormal.

Lab tests often ordered with a Urinalysis Complete test:

  • Complete Blood Count
  • Iron Total and Total Iron binding capacity
  • Hemoglobin A1c
  • Lipid Panel
  • CMP
  • TSH
  • Urine Culture
  • Bilirubin Fractionated
  • Glucose

Conditions where a Urinalysis Complete test is recommended:

  • Diabetes
  • Kidney Disease
  • Liver Disease
  • Hypertension
  • Pregnancy
  • Hematuria
  • Proteinuria
  • Kidney Stones

How does my health care provider use a Urinalysis Complete test?

A urinalysis is a series of tests that can diagnose a variety of disorders. It can be used to screen for and/or diagnose a variety of illnesses, including urinary tract infections, renal abnormalities, liver diseases, diabetes, and other metabolic disorders, to name a few.

Urinalysis may be used in conjunction with other tests, such as urine albumin, to monitor the progress of treatment in patients with diseases or conditions like diabetes or kidney disease.

What do my urinalysis complete test results mean?

There are numerous ways to interpret the results of a urinalysis. Unusual results are a warning sign that something isn't right and needs further testing.  To connect the urinalysis results with an individual's symptoms and clinical findings and to look for the causes of aberrant findings, other targeted tests must be done, such as a complete blood count, metabolic panel, or urine culture.

It is more likely that a problem must be addressed the higher the concentration of the atypical component, such as noticeably increased levels of protein, glucose, or red blood cells. On the other hand, the outcomes do not inform the medical professional as to what led to the finding or whether it is a transient or ongoing sickness.

A normal urinalysis does not rule out the possibility of disease. Early in a disease process, some persons will not release elevated amounts of a drug, and others will release them irregularly throughout the day, which means they could be overlooked by a single urine sample. Small amounts of substances may be undetectable in very dilute urine.

NOTE: Only measurable biomarkers will be reported.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: Hemoglobin A1c is the protein Hemoglobin found in red blood cells, but with glucose attached to it. Hemoglobin A1c is used to check for and monitor diabetes as it shows average blood glucose levels over the past 2 to 3 months.

Also Known As: A1c Test, HbA1c Test, Glycohemoglobin Test, Glycated Hemoglobin Test, Glycosylated Hemoglobin Test, HbA1c Test

Collection Method: Blood Draw

Specimen Type: Whole Blood

Test Preparation: No preparation required

When is a Hemoglobin A1c test ordered?

A1c may be requested as part of a routine physical examination or when a practitioner suspects a patient of having diabetes due to characteristic signs or symptoms of high blood sugar, such as:

  • Increased thirst and fluid intake
  • Increased urination
  • Increase in hunger
  • Fatigue
  • Vision is hazy
  • Infections that take a long time to heal

Adults who are overweight and have the following additional risk factors may consider doing the A1c test:

  • Physically inactive
  • Diabetes in a first-degree relative
  • Race/ethnicity that is at high risk such as African Americans, Latinos, Native Americans, Asian Americans, and Pacific Islanders
  • Blood pressure that is high
  • A lipid profile that is abnormal.
  • Polycystic ovarian syndrome 
  • Cardiovascular disease 
  • Insulin resistance and other conditions links to insulin resistance

People who have not been diagnosed with diabetes but have been assessed to be at an increased risk of developing diabetes should have their A1c levels tested at least once a year.

Monitoring

The A1c test may be performed 2 to 4 times a year, depending on the type of diabetes a person has, how well their diabetes is controlled, and the healthcare provider's recommendations. If diabetics are fulfilling treatment goals and have stable glycemic control, the American Diabetes Association advises A1c testing at least twice a year. A1c may be ordered quarterly when someone is first diagnosed with diabetes or if control isn't good.

What does a Hemoglobin A1c blood test check for?

Hemoglobin A1c, often known as A1c or glycated hemoglobin, is hemoglobin that has been attached to glucose. By assessing the proportion of glycated hemoglobin, the A1c test determines the average quantity of glucose in the blood during the previous 2 to 3 months.

Hemoglobin is a protein present inside red blood cells that transports oxygen.

Glycated hemoglobin is generated in proportion to the amount of glucose in the blood. Once glucose attaches to hemoglobin, it stays there for the duration of the red blood cell's life, which is usually about 120 days. The most common kind of glycated hemoglobin is known as A1c. A1c is created on a daily basis and is gradually removed from the bloodstream as older RBCs die and younger RBCs replace them.

This test can be used to detect and diagnose diabetes, as well as the risk of developing it. According to the American Diabetes Association's standards of medical care in diabetes, diabetes can be diagnosed using either A1c or glucose.

This test can also be used to track the progress of a diabetic patient's treatment. It aids in determining how well a person's glucose levels have been controlled over time by medication. An A1c of less than 7% suggests good glucose control and a lower risk of diabetic complications for the majority of diabetics for monitoring reasons.

Lab tests often ordered with a Hemoglobin A1c test:

  • Complete Blood Count
  • Glucose
  • Frucstosamine
  • Albumin
  • Comprehensive Metabolic Panel
  • Microalbumin w/creatinine
  • Lipid panel

Conditions where a Hemoglobin A1c test is recommended:

  • Type 1 Diabetes
  • Type 2 Diabetes

How does my health care provider use a Hemoglobin A1c test?

Adults can use the hemoglobin A1c test to screen for and diagnose diabetes and prediabetes.

A fasting glucose or oral glucose tolerance test should be done to screen or diagnose diabetes in these instances.

The A1c test is also used to track diabetics' glucose control over time. Diabetics strive to maintain blood glucose levels that are as close to normal as feasible. This helps to reduce the risks of consequences associated with chronically high blood sugar levels, such as progressive damage to body organs such as the kidneys, eyes, cardiovascular system, and nerves. The result of the A1c test depicts the average quantity of glucose in the blood over the previous 2-3 months. This can help diabetics and their healthcare professionals determine whether the steps they're taking to control their diabetes are working or if they need to be tweaked.

A1c is a blood test that is usually used to help newly diagnosed diabetics identify how high their uncontrolled blood glucose levels have been in the previous 2-3 months. The test may be ordered multiple times throughout the control period, and then at least twice a year after that to ensure that good control is maintained.

What does my Hemoglobin A1c test result mean?

HbA1c levels is currently reported as a percentage for monitoring glucose control, and it is suggested that most diabetics try to keep their hemoglobin A1c below 7%. The closer diabetics can keep their A1c to the therapeutic objective of less than 7% without experiencing abnormally low blood glucose, the better their diabetes is controlled. The risk of problems rises as the A1c rises.

However, a person with type 2 diabetes may have an A1c goal set by their healthcare professional. The length of time since diagnosis, the presence of other diseases as well as diabetes complications, the risk of hypoglycemia complications, life expectancy, and whether or not the person has a support system and healthcare resources readily available are all factors that may influence the goal.

For example, a person with heart disease who has had type 2 diabetes for many years without diabetic complications may have a higher A1c target set by their healthcare provider, whereas someone who is otherwise healthy and newly diagnosed may have a lower target set by their healthcare provider as long as low blood sugar is not a significant risk.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: Hemoglobin A1c is the protein Hemoglobin found in red blood cells, but with glucose attached to it. Hemoglobin A1c is used to check for and monitor diabetes as it shows average blood glucose levels over the past 2 to 3 months.

Also Known As: A1c Test, HbA1c Test, Glycohemoglobin Test, Glycated Hemoglobin Test, Glycosylated Hemoglobin Test, HbA1c Test

Collection Method: Blood Draw

Specimen Type: Whole Blood

Test Preparation: No preparation required

When is a Hemoglobin A1c test ordered?

A1c may be requested as part of a routine physical examination or when a practitioner suspects a patient of having diabetes due to characteristic signs or symptoms of high blood sugar, such as:

  • Increased thirst and fluid intake
  • Increased urination
  • Increase in hunger
  • Fatigue
  • Vision is hazy
  • Infections that take a long time to heal

Adults who are overweight and have the following additional risk factors may consider doing the A1c test:

  • Physically inactive
  • Diabetes in a first-degree relative
  • Race/ethnicity that is at high risk such as African Americans, Latinos, Native Americans, Asian Americans, and Pacific Islanders
  • Blood pressure that is high
  • A lipid profile that is abnormal.
  • Polycystic ovarian syndrome 
  • Cardiovascular disease 
  • Insulin resistance and other conditions links to insulin resistance

People who have not been diagnosed with diabetes but have been assessed to be at an increased risk of developing diabetes should have their A1c levels tested at least once a year.

Monitoring

The A1c test may be performed 2 to 4 times a year, depending on the type of diabetes a person has, how well their diabetes is controlled, and the healthcare provider's recommendations. If diabetics are fulfilling treatment goals and have stable glycemic control, the American Diabetes Association advises A1c testing at least twice a year. A1c may be ordered quarterly when someone is first diagnosed with diabetes or if control isn't good.

What does a Hemoglobin A1c blood test check for?

Hemoglobin A1c, often known as A1c or glycated hemoglobin, is hemoglobin that has been attached to glucose. By assessing the proportion of glycated hemoglobin, the A1c test determines the average quantity of glucose in the blood during the previous 2 to 3 months.

Hemoglobin is a protein present inside red blood cells that transports oxygen.

Glycated hemoglobin is generated in proportion to the amount of glucose in the blood. Once glucose attaches to hemoglobin, it stays there for the duration of the red blood cell's life, which is usually about 120 days. The most common kind of glycated hemoglobin is known as A1c. A1c is created on a daily basis and is gradually removed from the bloodstream as older RBCs die and younger RBCs replace them.

This test can be used to detect and diagnose diabetes, as well as the risk of developing it. According to the American Diabetes Association's standards of medical care in diabetes, diabetes can be diagnosed using either A1c or glucose.

This test can also be used to track the progress of a diabetic patient's treatment. It aids in determining how well a person's glucose levels have been controlled over time by medication. An A1c of less than 7% suggests good glucose control and a lower risk of diabetic complications for the majority of diabetics for monitoring reasons.

Lab tests often ordered with a Hemoglobin A1c test:

  • Complete Blood Count
  • Glucose
  • Frucstosamine
  • Albumin
  • Comprehensive Metabolic Panel
  • Microalbumin w/creatinine
  • Lipid panel

Conditions where a Hemoglobin A1c test is recommended:

  • Type 1 Diabetes
  • Type 2 Diabetes

How does my health care provider use a Hemoglobin A1c test?

Adults can use the hemoglobin A1c test to screen for and diagnose diabetes and prediabetes.

A fasting glucose or oral glucose tolerance test should be done to screen or diagnose diabetes in these instances.

The A1c test is also used to track diabetics' glucose control over time. Diabetics strive to maintain blood glucose levels that are as close to normal as feasible. This helps to reduce the risks of consequences associated with chronically high blood sugar levels, such as progressive damage to body organs such as the kidneys, eyes, cardiovascular system, and nerves. The result of the A1c test depicts the average quantity of glucose in the blood over the previous 2-3 months. This can help diabetics and their healthcare professionals determine whether the steps they're taking to control their diabetes are working or if they need to be tweaked.

A1c is a blood test that is usually used to help newly diagnosed diabetics identify how high their uncontrolled blood glucose levels have been in the previous 2-3 months. The test may be ordered multiple times throughout the control period, and then at least twice a year after that to ensure that good control is maintained.

What does my Hemoglobin A1c test result mean?

HbA1c levels is currently reported as a percentage for monitoring glucose control, and it is suggested that most diabetics try to keep their hemoglobin A1c below 7%. The closer diabetics can keep their A1c to the therapeutic objective of less than 7% without experiencing abnormally low blood glucose, the better their diabetes is controlled. The risk of problems rises as the A1c rises.

However, a person with type 2 diabetes may have an A1c goal set by their healthcare professional. The length of time since diagnosis, the presence of other diseases as well as diabetes complications, the risk of hypoglycemia complications, life expectancy, and whether or not the person has a support system and healthcare resources readily available are all factors that may influence the goal.

For example, a person with heart disease who has had type 2 diabetes for many years without diabetic complications may have a higher A1c target set by their healthcare provider, whereas someone who is otherwise healthy and newly diagnosed may have a lower target set by their healthcare provider as long as low blood sugar is not a significant risk.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.



Description: Hemoglobin A1c is the protein Hemoglobin found in red blood cells, but with glucose attached to it. Hemoglobin A1c is used to check for and monitor diabetes as it shows average blood glucose levels over the past 2 to 3 months.

Also Known As: A1c Test, Glycohemoglobin Test, Glycated Hemoglobin Test, Glycosylated Hemoglobin Test, HbA1c Test, Estimated Average Glucose Test

Collection Method: Blood Draw

Specimen Type: Whole Blood

Test Preparation: No preparation required

When is a Hemoglobin A1c with eAG test ordered?

A1c may be requested as part of a routine physical examination or when a practitioner suspects a patient of having diabetes due to characteristic signs or symptoms of high blood sugar, such as:

  • Increased thirst and fluid intake
  • Increased urination
  • Increase in hunger
  • Fatigue
  • Vision is hazy
  • Infections that take a long time to heal

Adults who are overweight and have the following additional risk factors may consider doing the A1c test:

  • Physically inactive
  • Diabetes in a first-degree relative
  • Race/ethnicity that is at high risk such as African Americans, Latinos, Native Americans, Asian Americans, and Pacific Islanders
  • Blood pressure that is high
  • A lipid profile that is abnormal.
  • Polycystic ovarian syndrome 
  • Cardiovascular disease 
  • Insulin resistance and other conditions links to insulin resistance

People who have not been diagnosed with diabetes but have been assessed to be at an increased risk of developing diabetes should have their A1c levels tested at least once a year.

Monitoring

The A1c test may be performed 2 to 4 times a year, depending on the type of diabetes a person has, how well their diabetes is controlled, and the healthcare provider's recommendations. If diabetics are fulfilling treatment goals and have stable glycemic control, the American Diabetes Association advises A1c testing at least twice a year. A1c may be ordered quarterly when someone is first diagnosed with diabetes or if control isn't good.

What does a Hemoglobin A1c with eAG blood test check for?

Hemoglobin A1c, often known as A1c or glycated hemoglobin, is hemoglobin that has been attached to glucose. By assessing the proportion of glycated hemoglobin, the A1c test determines the average quantity of glucose in the blood during the previous 2 to 3 months.

Hemoglobin is a protein present inside red blood cells that transports oxygen.

Glycated hemoglobin is generated in proportion to the amount of glucose in the blood. Once glucose attaches to hemoglobin, it stays there for the duration of the red blood cell's life, which is usually about 120 days. The most common kind of glycated hemoglobin is known as A1c. A1c is created on a daily basis and is gradually removed from the bloodstream as older RBCs die and younger RBCs replace them.

This test can be used to detect and diagnose diabetes, as well as the risk of developing it. According to the American Diabetes Association's standards of medical care in diabetes, diabetes can be diagnosed using either A1c or glucose.

This test can also be used to track the progress of a diabetic patient's treatment. It aids in determining how well a person's glucose levels have been controlled over time by medication. An A1c of less than 7% suggests good glucose control and a lower risk of diabetic complications for the majority of diabetics for monitoring reasons.

eAG may help you understand your A1C value because eAG is a unit similar to what you see regularly through self-monitoring on your meter.

Lab tests often ordered with a Hemoglobin A1c with eAG test:

  • Complete Blood Count
  • Glucose
  • Frucstosamine
  • Albumin
  • Comprehensive Metabolic Panel
  • Microalbumin w/creatinine
  • Lipid panel

Conditions where a Hemoglobin A1c with eAG test is recommended:

  • Type 1 Diabetes
  • Type 2 Diabetes

How does my health care provider use a Hemoglobin A1c with eAG test?

Adults can use the hemoglobin A1c test to screen for and diagnose diabetes and prediabetes.

A fasting glucose or oral glucose tolerance test should be done to screen or diagnose diabetes in these instances.

The A1c test is also used to track diabetics' glucose control over time. Diabetics strive to maintain blood glucose levels that are as close to normal as feasible. This helps to reduce the risks of consequences associated with chronically high blood sugar levels, such as progressive damage to body organs such as the kidneys, eyes, cardiovascular system, and nerves. The result of the A1c test depicts the average quantity of glucose in the blood over the previous 2-3 months. This can help diabetics and their healthcare professionals determine whether the steps they're taking to control their diabetes are working or if they need to be tweaked.

A1c is a blood test that is usually used to help newly diagnosed diabetics identify how high their uncontrolled blood glucose levels have been in the previous 2-3 months. The test may be ordered multiple times throughout the control period, and then at least twice a year after that to ensure that good control is maintained.

What does my Hemoglobin A1c test result mean?

HbA1c levels is currently reported as a percentage for monitoring glucose control, and it is suggested that most diabetics try to keep their hemoglobin A1c below 7%. The closer diabetics can keep their A1c to the therapeutic objective of less than 7% without experiencing abnormally low blood glucose, the better their diabetes is controlled. The risk of problems rises as the A1c rises.

However, a person with type 2 diabetes may have an A1c goal set by their healthcare professional. The length of time since diagnosis, the presence of other diseases as well as diabetes complications, the risk of hypoglycemia complications, life expectancy, and whether or not the person has a support system and healthcare resources readily available are all factors that may influence the goal.

For example, a person with heart disease who has had type 2 diabetes for many years without diabetic complications may have a higher A1c target set by their healthcare provider, whereas someone who is otherwise healthy and newly diagnosed may have a lower target set by their healthcare provider as long as low blood sugar is not a significant risk.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Most Popular
Measures 1,5 anhydroglucitol, a glucose derived carbohydrate whose urinary excretion varies inversely with mean blood glucose. 1,5 anhydroglucitol appears to integrate variation in mean blood glucose over a period of about two weeks.

Most Popular
Proinsulin is used to detect and monitor excessive hormone production from insulinomas.

Most Popular

Description: A Glucose test is a blood test used to screen for, diagnose, and monitor conditions that affect glucose levels such as prediabetes, diabetes, hyperglycemia, and hypoglycemia.

Also Known As: Fasting Blood Glucose Test, FBG Test, Fasting Blood Sugar Test, FBS Test, Fasting Glucose Test, FG Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: Fasting required

When is a Glucose test ordered?

Diabetes screening is recommended by several health groups, including the American Diabetes Association and the United States Preventive Services Task Force, when a person is 45 years old or has risk factors.

The ADA recommends retesting within three years if the screening test result is within normal limits, but the USPSTF recommends testing once a year. Annual testing may be used to monitor people with prediabetes.

When someone exhibits signs and symptoms of high blood glucose, a blood glucose test may be conducted.

Diabetics are frequently asked to self-check their glucose levels multiple times a day in order to monitor glucose levels and choose treatment alternatives as suggested by their doctor. Blood glucose levels may be ordered on a regular basis, along with other tests such as A1c, to track glucose control over time.

Unless they show early symptoms or have had gestational diabetes in a prior pregnancy, pregnant women are routinely screened for gestational diabetes between the 24th and 28th week of pregnancy. If a woman is at risk of type 2 diabetes, she may be tested early in her pregnancy, according to the American Diabetes Association. When a woman has type 1, type 2, or gestational diabetes, her health care provider will normally order glucose levels to monitor her condition throughout the duration of her pregnancy and after delivery.

What does a Glucose blood test check for?

A fasting glucose test measures glucose. Glucose is the major energy source for the body's cells and the brain and nervous system's only source of energy. A consistent supply must be provided, and a somewhat constant level of glucose in the blood must be maintained. The glucose level in the blood can be measured using a variety of methods. 

Fruits, vegetables, breads, and other carbohydrate-rich foods are broken down into glucose during digestion, which is absorbed by the small intestine and circulated throughout the body. Insulin, a hormone generated by the pancreas, is required for the use of glucose for energy production. Insulin promotes glucose transport into cells and instructs the liver to store surplus energy as glycogen for short-term storage or triglycerides in adipose cells.

Normally, blood glucose rises slightly after you eat or drink, and the pancreas responds by releasing insulin into the blood, the amount of which is proportional to the size and substance of the meal. The level of glucose in the blood declines as glucose enters the cells and is digested, and the pancreas responds by delaying, then ceasing the secretion of insulin.

When blood glucose levels fall too low, such as between meals or after a strong activity, glucagon is released, which causes the liver to convert some glycogen back into glucose, so boosting blood glucose levels. The level of glucose in the blood remains pretty steady if the glucose/insulin feedback loop is working appropriately. When the balance is upset and the blood glucose level rises, the body strives to restore it by boosting insulin production and removing excess glucose through the urine.

Several diseases can cause the equilibrium between glucose and pancreatic hormones to be disrupted, resulting in high or low blood glucose. Diabetes is the most common cause. Diabetes is a collection of illnesses characterized by inadequate insulin production and/or insulin resistance. Untreated diabetes impairs a person's ability to digest and utilize glucose normally. Type 1 diabetes is diagnosed when the body is unable to produce any or enough insulin. People with prediabetes or type 2 diabetes are insulin resistant and may or may not be able to produce enough of the hormone.

Organ failure, brain damage, coma, and, in extreme situations, death can result from severe, sudden fluctuations in blood glucose, either high or low. Chronically high blood glucose levels can harm body organs like the kidneys, eyes, heart, blood vessels, and nerves over time. Hypoglycemia can harm the brain and nerves over time.

Gestational diabetes, or hyperglycemia that exclusively arises during pregnancy, can affect some women. If left untreated, this can result in large babies with low glucose levels being born to these mothers. Women with gestational diabetes may or may not acquire diabetes later in life.

Lab tests often ordered with a Glucose test:

  • Complete Blood Count
  • Iron Total and Total Iron binding capacity
  • Hemoglobin A1c
  • Lipid Panel
  • Urinalysis Complete
  • TSH
  • CMP
  • Insulin
  • Microalbumin
  • Fructosamine
  • C-Peptide

Conditions where a Glucose test is recommended:

  • Diabetes
  • Kidney Disease
  • Insulin Resistance
  • Pancreatic Diseases
  • Hyperglycemia
  • Hypoglycemia

Commonly Asked Questions:

How does my health care provider use a Glucose test?

The blood glucose test can be used for a variety of purposes, including:

  • Detect hyperglycemia and hypoglycemia
  • Screen for diabetes in those who are at risk before symptoms appear; there may be no early indications or symptoms of diabetes in some circumstances. As a result, screening can aid in detecting it and allowing treatment to begin before the illness worsens or complications emerge.
  • Aid in the detection of diabetes, prediabetes, and gestational diabetes.
  • Monitor your blood sugar levels and manage your diabetes

Glucose levels should be monitored in those who have been diagnosed with diabetes.

Between the 24th and 28th week of pregnancy, glucose blood tests are performed to assess pregnant women for gestational diabetes. Pregnant women who have never been diagnosed with diabetes should be screened and diagnosed using either a one-step or two-step strategy, according to the American Diabetes Association and the US Preventive Services Task Force.

Other tests, including diabetic autoantibodies, insulin, and C-peptide, may be used in conjunction with glucose to assist in detecting the reason of elevated glucose levels, differentiate between type 1 and type 2 diabetes, and assess insulin production.

What does my glucose test result mean?

High blood glucose levels are most commonly associated with diabetes, but they can also be caused by a variety of other diseases and ailments.

Hypoglycemia is defined by a drop in blood glucose to a level that triggers nervous system symptoms before affecting the brain. The Whipple triad is a set of three criteria for diagnosing hypoglycemia.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Most Popular
The adiponectin ELISA assay quantitatively measures human adiponectin in serum. It has been shown that decreased expression of adiponectin correlates with insulin resistance. Adiponectin appears to be a potent insulin enhancer linking adipose tissue and whole body glucose metabolism.

Description: A Basic Metabolic Panel is a blood test used to screen for, diagnose, and monitor a variety of conditions and diseases such as diabetes and kidney disease.  

Also Known As: BMP, Chemistry Panel, Chemistry Screen, Chem 7, Chem 11, BMP Test, SMA 7, SMAC7, Basic Metabolic Test, Chem Test, Chem Panel Test 

Collection Method: Blood Draw 

Specimen Type: Serum 

Test Preparation: 9-12 hours fasting is preferred. 

When is a Basic Metabolic Panel test ordered?  

A BMP may be requested as part of a standard physical examination. 

The panel is frequently ordered in hospital emergency rooms because its components provide vital information regarding a person's renal state, electrolyte and acid/base balance, blood glucose, and calcium levels. Significant changes in these test results can suggest serious issues such as renal failure, insulin shock or diabetic coma, respiratory distress, or abnormalities in heart rhythm. 

What does a Basic Metabolic Panel blood test check for? 

The basic metabolic panel (BMP) is a 9-test panel that provides essential information to a health practitioner about a person's current metabolic status, including kidney health, blood glucose level, electrolyte and acid/base balance. Abnormal results, particularly when they are combined, can suggest a problem that needs to be addressed. 

The following tests are included in the BMP test: 

  • Bun/Creatinine Ratio: this is a ratio between your Urea Nitrogen (BUN) result and Creatinine result.  

  • Calcium: this is a measurement of calcium in your blood. Calcium is the most abundant and one of the most important minerals in the body as it essential for proper nerve, muscle, and heart function. Calcium is also used for blood clot formation and the formation and maintenance of bones and teeth. 

  • Carbon Dioxide: this is a measure of carbon dioxide in your blood. Carbon dioxide is a negatively charged electrolyte that works with other electrolytes such as chloride, potassium, and sodium to regulate the body’s acid-base balance and fluid levels.  

  • Chloride: this is a measure of Chloride in your blood. Chloride is a negatively charged electrolyte that works with other electrolytes such as potassium and sodium to regulate the body’s acid-base balance and fluid levels. 

  • Creatinine: this is a measure of Creatinine levels in your blood. Creatinine is created from the breakdown of creatine in your muscles and is removed from your body by the kidneys. Elevated creatinine levels are often associated with kidney damage. 

  • Egfr African American: this is a measure of how well your kidneys are functioning. Glomeruli are tiny filters in your kidneys that filter out waste products from your blood for removal while retaining important substances such as nutrients and blood cells. 

  • Egfr Non-Afr. American: this is a measure of how well your kidneys are functioning. Glomeruli are tiny filters in your kidneys that filter out waste products from your blood for removal while retaining important substances such as nutrients and blood cells. 

  • Glucose: this is a measure of glucose in your blood. Glucose is created from the breakdown of carbohydrates during digestion and is the body’s primary source of energy. 

  • Potassium: this is a measure of Potassium in your blood. Potassium is an electrolyte that plays a vital role in cell metabolism, nerve and muscle function, and transport of nutrients into cells and removal of wastes products out of cells. 

  • Sodium: this is a measure of Sodium in your blood. Sodium is an electrolyte that plays a vital role in nerve and muscle function. 

  • Urea Nitrogen (Bun): this is a measure of Urea Nitrogen in your blood, also known as Blood Urea Nitrogen (BUN). Urea is a waste product created in the liver when proteins are broken down into amino acids. Elevated levels are often associated with kidney damage. 

Lab tests often ordered with a Basic Metabolic Panel test: 

  • Complete Blood Count with Differential and Platelets
  • Hemoglobin A1c
  • Iron and Total Iron Binding Capacity
  • Lipid Panel
  • Insulin
  • Vitamin B12 and Folate
  • C-Reactive Protein

Conditions where a Basic Metabolic Panel test is recommended: 

  • Diabetes 
  • Kidney Disease 
  • Liver Disease 

Commonly Asked Questions: 

How does my health care provider use a Basic Metabolic Panel test? 

The basic metabolic panel (BMP) is used to evaluate a person's kidney function, electrolyte, acid/base balance, and blood glucose level, all of which are linked to their metabolism. It can also be used to keep track of hospitalized patients and persons with known illnesses like hypertension and hypokalemia. 

If a health practitioner wants to track two or more separate BMP components, the full BMP might be ordered because it contains more information. Alternatively, when monitoring, the healthcare provider may order specific tests, such as a follow-up glucose, potassium, or calcium test, or an electrolyte panel to track sodium, potassium, chloride, and CO2. If a doctor needs further information, he or she can request a comprehensive metabolic panel (CMP), which is a collection of 21 tests that includes the BMP. 

What do my Basic Metabolic Panel results mean? 

The results of the tests included in the BMP are usually analyzed together to look for patterns. A single abnormal test result may indicate something different than a series of abnormal test findings. 

Out-of-range results on any of the BMP's tests can be caused by a number of things, including kidney failure, breathing issues, and diabetes-related consequences. If any of the results are abnormal, one or more follow-up tests are usually ordered to help determine the reason and/or establish a diagnosis. 

Is there anything else I should know? 

The results of the BMP components can be influenced by a range of prescription and over-the-counter medicines. Any medications you're taking should be disclosed to your healthcare professional. Similarly, it is critical to provide them with a thorough medical history because many other circumstances can influence how your results are interpreted. 

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.

Please note the following regarding BUN/Creatinine ratio: 

The lab does not report the calculation for the BUN/Creatinine Ratio unless one or both biomarkers’ results fall out of the published range. 

If you still wish to see the value, it's easy to calculate. Simply take your Urea Nitrogen (BUN) result and divide it by your Creatinine result.  

As an example, if your Urea Nitrogen result is 11 and your Creatinine result is 0.86, then you would divide 11 by 0.86 and get a BUN/Creatinine Ratio result of 12.79. 



See individual analytes

In diabetics, the measurement of B-hydroxybutyrate as well as blood glucose is needed for the assessment of the severity of diabetic coma and is essential for the exclusion of hyperosmolar non-ketotic diabetic coma. A specific enzymatic assay for Beta-hydroxybutyrate is extrememly important in the assessment of ketosis.


Most Popular

Description: A C-peptide test is a test that will measure the amount of C-peptide, a short amino acid chain, in the blood. This test can be used to determine if the beta cells in the pancreas are producing enough insulin. It can also be used to evaluate the reason for low blood glucose.

Also Known As: Insulin C-Peptide Test, Connecting Peptide Insulin Test, Proinsulin C-peptide test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: Fasting is required.

When is a C-Peptide test ordered?

When a person is initially diagnosed with type 1 diabetes, C-peptide levels may be ordered as part of a "residual beta cell function" study.

When a person has type 2 diabetes, a health practitioner may request the test on a regular basis to track the state of their beta cells and insulin production over time and assess whether or not insulin injections are needed.

When there is reported acute or recurring low blood glucose and/or excess insulin is suspected, C-peptide levels can be measured.

A C-peptide test may be conducted on a regular basis after a person has been diagnosed with an insulinoma to assess treatment effectiveness and detect tumor recurrence.

When a person's pancreas has been removed or has had pancreas islet cell transplants, C-peptide levels may be tracked over time.

What does a C-Peptide blood test check for?

C-peptide is a chemical made up of a short chain of amino acids that is released into the bloodstream as a byproduct of the pancreas producing insulin. This test determines how much C-peptide is present in a blood or urine sample.

Proinsulin, a physiologically inactive molecule, splits apart in the pancreas, within specialized cells called beta cells, to generate one molecule of C-peptide and one molecule of insulin. Insulin is necessary on a regular basis for the transport of glucose into the body's cells. When insulin is needed and released into the bloodstream in reaction to elevated glucose levels, equal amounts of C-peptide are also released. C-peptide can be used as a measure of insulin production because it is produced at the same rate as insulin.

C-peptide testing, in instance, can be used to assess the body's insulin production and distinguish it from insulin that is not produced by the body but is given as diabetes medication and hence does not generate C-peptide. This test can be done in conjunction with a blood test for insulin.

Lab tests often ordered with a C-Peptide test:

  • Insulin
  • Glucose

Conditions where a C-Peptide test is recommended:

  • Diabetes
  • Kidney Disease
  • Liver Disease
  • Insulin Resistance
  • Metabolic Syndrome

How does my health care provider use a C-Peptide test?

C-peptide testing can be used for a variety of reasons. When proinsulin breaks into one molecule of C-peptide and one molecule of insulin, C-peptide is created by the beta cells in the pancreas. Insulin is a hormone that allows the body to use glucose as its primary energy source. C-peptide is a helpful measure of insulin production since it is produced at the same rate as insulin.

A C-peptide test is not used to diagnose diabetes; however, when a person is newly diagnosed with diabetes, it may be ordered alone or in conjunction with an insulin level to evaluate how much insulin the pancreas is currently making.

The body becomes resistant to the effects of insulin in type 2 diabetes, so it compensates by manufacturing and releasing more insulin, which can destroy beta cells. Oral medications are commonly used to help type 2 diabetics stimulate their bodies to produce more insulin and/or make their cells more receptive to the insulin that is already produced. Type 2 diabetics may eventually produce very little insulin as a result of beta cell loss, necessitating insulin injections. Because any insulin produced by the body is reflected in the C-peptide level, the C-peptide test can be used to track beta cell activity and capability over time and to assist a health care provider in deciding when to start insulin treatment.

Antibodies to insulin can develop in people on insulin therapy, independent of the source of the insulin. These often interfere with insulin assays, making it difficult to assess endogenous insulin production directly. C-peptide measurement is a good alternative to insulin testing in certain situations.

C-peptide levels can also be utilized in conjunction with insulin and glucose levels to help determine the source of hypoglycemia and track its therapy. Excessive insulin supplementation, alcohol intake, hereditary liver enzyme deficits, liver or kidney illness, or insulinomas can all cause hypoglycemia symptoms.

Insulinomas can be diagnosed with the C-peptide test. These are tumors of the pancreas' islet cells, which can produce excessive levels of insulin and C-peptide, resulting in abrupt hypoglycemia. C-peptide testing can be used to track how well insulinoma treatment is working and to detect recurrence.

A C-peptide test may be performed to help evaluate a person who has been diagnosed with metabolic syndrome, a group of risk factors that includes abdominal obesity, high blood pressure, and elevated blood glucose and/or insulin resistance.

C-peptide levels are occasionally used to verify the effectiveness of treatment and the procedure's sustained success after someone has had his pancreatic removed or has had pancreas islet cell transplants to restore the ability to manufacture insulin.

What do my C-Peptide test results mean?

A high level of C-peptide implies that endogenous insulin synthesis is high. This could be a result of a high blood glucose level brought on by carbohydrate consumption and/or insulin resistance. Insulinomas, low blood potassium, Cushing syndrome, and renal failure are all linked to a high level of C-peptide.

C-peptide levels that are decreasing in someone with an insulinoma suggest a response to treatment when used for monitoring; levels that are increasing may indicate a tumor recurrence when used for monitoring.

A low amount of C-peptide is linked to a reduction in insulin synthesis. This can happen when the beta cells generate insufficient insulin, as in diabetes, or when their production is reduced by exogenous insulin administration.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.



Did you know that 34.2 million people in America Blood have diabetes? If you are one of these people, blood sugar monitoring is essential to monitoring your diabetes. 

Keep reading to learn more about blood sugar monitoring, different glucose blood tests, and diabetes. 

What is Diabetes?

The health condition of diabetes affects how well your body turns sugar, or glucose, into energy.

Normally, when you consume food, your body produces insulin that allows your body to use blood sugar for energy. However, having diabetes means that your body is either unable to use insulin or does not produce enough of it.

What Is Blood Sugar Monitoring?

Blood sugar monitoring is a way to help manage your diabetes. You can track your treatment progress and see what changes need to be made. 

Through monitoring, you can track your blood sugar, see how different medications affect your blood sugar levels, and see the effects of exercise and diet changes. 

There are different ways to monitor your blood sugar.

Common ways include testing through a blood sugar meter that reads your results instantly, through a continuous blood glucose monitor, and through lab tests collected by professionals. 

Using a blood sugar test shows your blood sugar range. For adults who do not have diabetes, a normal blood sugar range while fasting is 77-99mg/dL, and for people who do have diabetes, a normal blood sugar range while fasting is 80-130mg/dL.

Risk Factors of Not Monitoring Your Blood Sugar

Monitoring your blood sugar through blood sugar testing helps you control and manage your diabetes. If left unmonitored and uncontrolled, your blood sugar can drop suddenly.

This is known as hypoglycemia. Low blood sugar can make you faint, have seizures, or even go into a coma. 

Diabetes that is not managed can also cause eye problems such as the following:

  • cataracts
  • macular edema
  • glaucoma
  • diabetic retinopathy

High blood sugar, or hyperglycemia, is also a risk of unmonitored and unregulated blood sugar. Symptoms of high blood sugar include increased thirst and frequent urination. 

High blood sugar can result in a condition called ketoacidosis, which is when your body is unable to use sugar to fuel your body because it does not have enough insulin. 

Neuropathy is another risk associated with high blood sugar. Neuropathy is nerve damage that can cause numbness, tingling sensation, burning sensation, and pain. 

What Are the Signs and Symptoms of Low and High Blood Sugar?

The signs and symptoms of low and high blood sugar vary from case to case. Some common signs and symptoms of low blood sugar include:

  • feeling tired and weak
  • dizziness
  • sweating
  • anxiety
  • shaking
  • increased heart rate
  • irritability
  • extreme feeling of hunger

Common signs and symptoms of high blood sugar include:

  • nausea
  • extreme feeling of hunger
  • extreme feeling of thirst
  • blurry vision
  • drowsiness
  • increase in urination

If you experience high or low blood sugar symptoms, you need to test your blood sugar.


Being able to recognize the signs and symptoms of high and low blood sugar can help you make corrections to your treatment to avoid serious complications.

How Is Diabetes Diagnosed?

Diabetes is diagnosed by checking your blood sugar levels through a blood test. The glucose blood test will indicate if your blood sugar readings are abnormal. 

There are certain percentages of the population that are at a higher risk of being diagnosed with diabetes.

People who have a family history of diabetes, are inactive or overweight, or have high blood sugar are more likely to have diabetes. 

The Lab Tests to Screen, Diagnose, and Monitor Blood Sugar

Ulta Lab Tests offers a variety of lab tests for screening, diagnosing, and monitoring blood sugar levels.

Lab tests that screen for abnormal blood sugar levels include:

Lab tests that are used to diagnose diabetes include:

There are also glucose blood tests that help you monitor your blood sugar. These include:

Once you have chosen what type of test you want to take, simply order it, have your blood drawn at one of our 2100 approved patient service centers across the country, and review your results online.

Frequently Asked Questions About Glucose Blood Tests

Monitoring your blood sugar does not have to be complicated. Here are a few frequently asked questions and their answers.

How Do I Prepare for My Test? 

Typically, the individual tests do not require special preparations. However, you may be required to fast beforehand. You will be notified of any special instructions. 

What Should I Do if I Receive an Abnormal Test Result?

If you receive an abnormal test result, you should discuss the result with a doctor. Although an abnormal result is something you should evaluate further, it does not mean that you have a condition or disorder. 

What Time of Day Should I Test My Blood Sugar?

Your blood sugar normally fluctuates during the day because of a variety of reasons. Good times to test your blood sugar for a more accurate reading are before meals. 

Do I Need to Keep Taking My Medication Before Testing?

Yes, you should always take any medications prescribed by your doctor. However, if there are any special instructions, you will be notified. 

Benefits of Glucose Blood Tests and Blood Sugar Monitoring

There are many benefits of blood sugar testing and monitoring. One of the main benefits is that you take control of your health.

Glucose blood tests can show you if you need to make lifestyle changes or manage your blood sugar through medication.

Another benefit is that blood tests and monitoring offer you peace of mind. You won't have to wonder what your blood sugar levels are, and you won't have to worry about them. 

We at Ulta Lab Tests offer you a way to understand and manage your health in a convenient and affordable way. Ulta Lab Tests offers tests that are highly accurate and reliable so you can make informed decisions about your health.

  • Secure and confidential results
  • No insurance is needed
  • No doctor's referral required
  • Affordable pricing
  • 100% satisfaction guarantee

Order your blood sugar monitoring lab tests today and your results will be provided to you securely and confidentially online in 24 to 48 hours for most tests.

Take control of your health today with Ulta Lab Tests.