Erectile Dysfunction (ED)

Erectile Dysfunction (ED) Testing and health information

Do you suspect you may have ED?

Order the erectile dysfunction tests with Ulta Lab Tests used by Urologists, get tested locally, and get results in 24 to 48 hrs. 

If you’re having trouble getting or keeping an erection, it can be a sign of something serious. The good news is that there are lab tests for erectile dysfunction (ED) to help diagnose the cause of the condition so that you can get the proper treatment. You should know your options to make the best decision for yourself. That’s why we offer a comprehensive set of ED lab tests and lab panels used by Urologists to diagnose ED and conditions that may cause ED. We want everyone who thinks they might have ED to have the ability to order their lab tests to understand their health and their options.

If you want to learn more about erectile dysfunction (ED) and the lab tests that can help you, click on the title of the articles below.

ED is a problem that affects millions of men. It’s not just the fact that you can’t get it up, but also the psychological effects on your self-esteem and relationships.

There are many possible causes of ED, including heart disease, diabetes, kidney disease, thyroid problems, and hormonal imbalances. If you have ED, it’s time to find out what is causing your ED. Our lab tests will help you get the answers you need. You can even test for more than just heart disease and diabetes to determine if they are causing your ED, so there are no surprises when you receive your results.

Your health is important – don’t wait until it gets worse before taking action. Now is the time to learn more about what could be causing your symptoms so that you can take the next steps with your doctor and find out if there are any treatments available that will help improve your quality of life again soon! Don’t let another day go by without knowing whether or not you have ED – order these easy-to-use lab tests now from Ulta Lab Tests, used by Urologists, today!

Take control of your health with Ulta Lab Tests! You may obtain discounted lab tests online 24 hours a day, 7 days a week. Plus, we have 2100 locations nationwide. Quest Diagnostics delivers test results in 24 to 48 hours for most tests after the specimen collection, and our customer service is always friendly and helpful. 

Choose from the list below to get your blood tests to identify the cause of ED. You can take charge of your health this way!


Name Matches


Erectile Dysfunction (ED) Hormone Panel

  • DHEA Sulfate, Immunoassay [ 402 ]
  • Estradiol [ 4021 ]
  • FSH and LH [ 7137 ]
  • IGF-I, LC/MS [ 16293 ]
  • Testosterone, Total And Free And Sex Hormone Binding Globulin [ 37073 ]

Erectile Dysfunction (ED) Plus Panel

  • DHEA Sulfate, Immunoassay [ 402 ]
  • Dihydrotestosterone (DHT), LC/MS/MS [ 90567 ]
  • Estradiol [ 4021 ]
  • FSH and LH [ 7137 ]
  • IGF-I, LC/MS [ 16293 ]
  • Prolactin [ 746 ]
  • Testosterone, Total And Free And Sex Hormone Binding Globulin [ 37073 ]

Erectile Dysfunction (ED) Hormone Panel 3

  • DHEA Sulfate, Immunoassay [ 402 ]
  • Dihydrotestosterone (DHT), LC/MS/MS [ 90567 ]
  • Estradiol [ 4021 ]
  • FSH and LH [ 7137 ]
  • IGF-I, LC/MS [ 16293 ]
  • Pregnenolone, LC/MS/MS [ 31493 ]
  • Prolactin [ 746 ]
  • Testosterone, Total And Free And Sex Hormone Binding Globulin [ 37073 ]

Erectile Dysfunction (ED) Plus Panel

  • Comprehensive Metabolic Panel (CMP)
  • DHEA Sulfate, Immunoassay 
  • Estradiol
  • FSH and LH 
  • Hemoglobin A1c (HgbA1C)
  • IGF-I, LC/MS 
  • PSA Total 
  • T3, Free
  • T4, Free
  • Testosterone, Total And Free And Sex Hormone Binding Globulin
  • TSH
  • Urinalysis (UA), Complete

Erectile Dysfunction (ED) Plus Panel 2

  • Comprehensive Metabolic Panel (CMP)
  • DHEA Sulfate, Immunoassay 
  • Dihydrotestosterone (DHT), LC/MS/MS
  • Estradiol
  • FSH and LH 
  • Hemoglobin A1c (HgbA1C)
  • IGF-I, LC/MS 
  • Prolactin 
  • PSA Total 
  • T3, Free
  • T4, Free
  • Testosterone, Total And Free And Sex Hormone Binding Globulin
  • TSH
  • Urinalysis (UA), Complete

Erectile Dysfunction (ED) Plus Panel 3

  • Comprehensive Metabolic Panel (CMP)
  • DHEA Sulfate, Immunoassay 
  • Dihydrotestosterone (DHT), LC/MS/MS
  • Estradiol
  • FSH and LH 
  • Hemoglobin A1c (HgbA1C)
  • IGF-I, LC/MS 
  • Pregnenolone, LC/MS/MS
  • Prolactin 
  • PSA Total 
  • T3, Free
  • T4, Free
  • Testosterone, Total And Free And Sex Hormone Binding Globulin
  • TSH
  • Urinalysis (UA), Complete

Most Popular
Serum calcium is involved in the regulation of neuromuscular and enzyme activity, bone metabolism and blood coagulation. Calcium blood levels are controlled by a complex interaction of parathyroid hormone, vitamin D, calcitonin and adrenal cortical steroids. Calcium measurements are useful in the diagnosis of parathyroid disease, some bone disorders and chronic renal disease. A low level of calcium may result in tetany.

Description: A CBC or Complete Blood Count with Differential and Platelets test is a blood test that measures many important features of your blood’s red and white blood cells and platelets. A Complete Blood Count can be used to evaluate your overall health and detect a wide variety of conditions such as infection, anemia, and leukemia. It also looks at other important aspects of your blood health such as hemoglobin, which carries oxygen. 

Also Known As: CBC test, Complete Blood Count Test, Total Blood Count Test, CBC with Differential and Platelets test, Hemogram test  

Collection Method: Blood Draw 

Specimen Type: Whole Blood 

Test Preparation: No preparation required 

When is a Complete Blood Count test ordered?  

The complete blood count (CBC) is an extremely common test. When people go to the doctor for a standard checkup or blood work, they often get a CBC. Suppose a person is healthy and their results are within normal ranges. In that case, they may not need another CBC unless their health condition changes, or their healthcare professional believes it is necessary. 

When a person exhibits a variety of signs and symptoms that could be connected to blood cell abnormalities, a CBC may be done. A health practitioner may request a CBC to help diagnose and determine the severity of lethargy or weakness, as well as infection, inflammation, bruises, or bleeding. 

When a person is diagnosed with a disease that affects blood cells, a CBC is frequently done regularly to keep track of their progress. Similarly, if someone is being treated for a blood condition, a CBC may be performed on a regular basis to see if the treatment is working. 

Chemotherapy, for example, can influence the generation of cells in the bone marrow. Some drugs can lower WBC counts in the long run. To monitor various medication regimens, a CBC may be required on a regular basis. 

What does a Complete Blood Count test check for? 

The complete blood count (CBC) is a blood test that determines the number of cells in circulation. White blood cells (WBCs), red blood cells (RBCs), and platelets (PLTs) are three types of cells suspended in a fluid called plasma. They are largely created and matured in the bone marrow and are released into the bloodstream when needed under normal circumstances. 

A CBC is mainly performed with an automated machine that measures a variety of factors, including the number of cells present in a person's blood sample. The findings of a CBC can reveal not only the quantity of different cell types but also the physical properties of some of the cells. 

Significant differences in one or more blood cell populations may suggest the presence of one or more diseases. Other tests are frequently performed to assist in determining the reason for aberrant results. This frequently necessitates visual confirmation via a microscope examination of a blood smear. A skilled laboratory technician can assess the appearance and physical features of blood cells, such as size, shape, and color, and note any anomalies. Any extra information is taken note of and communicated to the healthcare provider. This information provides the health care provider with further information about the cause of abnormal CBC results. 

The CBC focuses on three different types of cells: 

WBCs (White Blood Cells) 

The body uses five different types of WBCs, also known as leukocytes, to keep itself healthy and battle infections and other types of harm. The five different leukocytes are eosinophiles, lymphocytes, neutrophiles, basophils, and monocytes. They are found in relatively steady numbers in the blood. Depending on what is going on in the body, these values may momentarily rise or fall. An infection, for example, can cause the body to manufacture more neutrophils in order to combat bacterial infection. The amount of eosinophils in the body may increase as a result of allergies. A viral infection may cause an increase in lymphocyte production. Abnormal (immature or mature) white cells multiply fast in certain illness situations, such as leukemia, raising the WBC count. 

RBCs (Red Blood Cells) 

The bone marrow produces red blood cells, also known as erythrocytes, which are transferred into the bloodstream after maturing. Hemoglobin, a protein that distributes oxygen throughout the body, is found in these cells. Because RBCs have a 120-day lifespan, the bone marrow must constantly manufacture new RBCs to replace those that have aged and disintegrated or have been lost due to hemorrhage. A variety of diseases, including those that cause severe bleeding, can alter the creation of new RBCs and their longevity. 

The CBC measures the number of RBCs and hemoglobin in the blood, as well as the proportion of RBCs in the blood (hematocrit), and if the RBC population appears to be normal. RBCs are generally homogeneous in size and shape, with only minor differences; however, considerable variances can arise in illnesses including vitamin B12 and folate inadequacy, iron deficiency, and a range of other ailments. Anemia occurs when the concentration of red blood cells and/or the amount of hemoglobin in the blood falls below normal, resulting in symptoms such as weariness and weakness. In a far smaller percentage of cases, there may be an excess of RBCs in the blood (erythrocytosis or polycythemia). This might obstruct the flow of blood through the tiny veins and arteries in extreme circumstances. 

Platelets 

Platelets, also known as thrombocytes, are small cell fragments that aid in the regular clotting of blood. A person with insufficient platelets is more likely to experience excessive bleeding and bruises. Excess platelets can induce excessive clotting or excessive bleeding if the platelets are not operating properly. The platelet count and size are determined by the CBC. 

Lab tests often ordered with a Complete Blood Count test: 

  • Reticulocytes
  • Iron and Total Iron Binding Capacity
  • Basic Metabolic Panel
  • Comprehensive Metabolic Panel
  • Lipid Panel
  • Vitamin B12 and Folate
  • Prothrombin with INR and Partial Thromboplastin Times
  • Sed Rate (ESR)
  • C-Reactive Protein
  • Epstein-Barr Virus
  • Von Willebrand Factor Antigen

Conditions where a Complete Blood Count test is recommended: 

  • Anemia
  • Aplastic Anemia
  • Iron Deficiency Anemia
  • Vitamin B12 and Folate Deficiency
  • Sickle Cell Anemia
  • Heart Disease
  • Thalassemia
  • Leukemia
  • Autoimmune Disorders
  • Cancer
  • Bleeding Disorders
  • Inflammation
  • Epstein-Barr Virus
  • Mononucleosis

Commonly Asked Questions: 

How does my health care provider use a Complete Blood Count test? 

The complete blood count (CBC) is a common, comprehensive screening test used to measure a person's overall health status.  

What do my Complete Blood Count results mean? 

A low Red Blood Cell Count, also known as anemia, could be due many different causes such as chronic bleeding, a bone marrow disorder, and nutritional deficiency just to name a few. A high Red Blood Cell Count, also known as polycythemia, could be due to several conditions including lung disease, dehydration, and smoking. Both Hemoglobin and Hematocrit tend to reflect Red Blood Cell Count results, so if your Red Blood Cell Count is low, your Hematocrit and Hemoglobin will likely also be low. Results should be discussed with your health care provider who can provide interpretation of your results and determine the appropriate next steps or lab tests to further investigate your health. 

What do my Differential results mean? 

A low White Blood Cell count or low WBC count, also known as leukopenia, could be due to a number of different disorders including autoimmune issues, severe infection, and lymphoma. A high White Blood Cell count, or high WBC count, also known as leukocytosis, can also be due to many different disorders including infection, leukemia, and inflammation. Abnormal levels in your White Blood Cell Count will be reflected in one or more of your different white blood cells. Knowing which white blood cell types are affected will help your healthcare provider narrow down the issue. Results should be discussed with your health care provider who can provide interpretation of your results and determine the appropriate next steps or lab tests to further investigate your health. 

What do my Platelet results mean? 

A low Platelet Count, also known as thrombocytopenia, could be due to a number of different disorders including autoimmune issues, viral infection, and leukemia. A high Platelet Count, also known as Thrombocytosis, can also be due to many different disorders including cancer, iron deficiency, and rheumatoid arthritis. Results should be discussed with your health care provider who can provide interpretation of your results and determine the appropriate next steps or lab tests to further investigate your health. 

NOTE: Only measurable biomarkers will be reported. Certain biomarkers do not appear in healthy individuals. 

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.

Reflex Parameters for Manual Slide Review
  Less than  Greater Than 
WBC  1.5 x 10^3  30.0 x 10^3 
Hemoglobin  7.0 g/dL  19.0 g/dL 
Hematocrit  None  75%
Platelet  100 x 10^3  800 x 10^3 
MCV  70 fL  115 fL 
MCH  22 pg  37 pg 
MCHC  29 g/dL  36.5 g/dL 
RBC  None  8.00 x 10^6 
RDW  None  21.5
Relative Neutrophil %  1% or ABNC <500  None 
Relative Lymphocyte %  1% 70%
Relative Monocyte %  None  25%
Eosinophil  None  35%
Basophil  None  3.50%
     
Platelet  <75 with no flags,
>100 and <130 with platelet clump flag present,
>1000 
Instrument Flags Variant lymphs, blasts,
immature neutrophils,  nRBC’s, abnormal platelets,
giant platelets, potential interference
     
The automated differential averages 6000+ cells. If none of the above parameters are met, the results are released without manual review.
CBC Reflex Pathway

Step 1 - The slide review is performed by qualified Laboratory staff and includes:

  • Confirmation of differential percentages
  • WBC and platelet estimates, when needed
  • Full review of RBC morphology
  • Comments for toxic changes, RBC inclusions, abnormal lymphs, and other
  • significant findings
  • If the differential percentages agree with the automated counts and no abnormal cells are seen, the automated differential is reported with appropriate comments

Step 2 - The slide review is performed by qualified Laboratory staff and includes: If any of the following are seen on the slide review, Laboratory staff will perform a manual differential:

  • Immature, abnormal, or toxic cells
  • nRBC’s
  • Disagreement with automated differential
  • Atypical/abnormal RBC morphology
  • Any RBC inclusions

Step 3 If any of the following are seen on the manual differential, a Pathologist will review the slide:

  • WBC<1,500 with abnormal cells noted
  • Blasts/immature cells, hairy cell lymphs, or megakaryocytes
  • New abnormal lymphocytes or monocytes
  • Variant or atypical lymphs >15%
  • Blood parasites
  • RBC morphology with 3+ spherocytes, RBC inclusions, suspect Hgb-C,
  • crystals, Pappenheimer bodies or bizarre morphology
  • nRBC’s

Description: A Comprehensive Metabolic Panel or CMP is a blood test that is a combination of a Basic Metabolic Panel, a Liver Panel, and electrolyte panel, and is used to screen for, diagnose, and monitor a variety of conditions and diseases such as liver disease, diabetes, and kidney disease. 

Also Known As: CMP, Chem, Chem-14, Chem-12, Chem-21, Chemistry Panel, Chem Panel, Chem Screen, Chemistry Screen, SMA 12, SMA 20, SMA 21, SMAC, Chem test

Collection Method: 

Blood Draw 

Specimen Type: 

Serum 

Test Preparation: 

9-12 hours fasting is preferred. 

When is a Comprehensive Metabolic Panel test ordered:  

A CMP is frequently requested as part of a lab test for a medical evaluation or yearly physical. A CMP test consists of many different tests that give healthcare providers a range of information about your health, including liver and kidney function, electrolyte balance, and blood sugar levels. To confirm or rule out a suspected diagnosis, abnormal test results are frequently followed up with other tests that provide a more in depth or targeted analysis of key areas that need investigating. 

What does a Comprehensive Metabolic Panel blood test check for? 

The complete metabolic panel (CMP) is a set of 20 tests that provides critical information to a healthcare professional about a person's current metabolic status, check for liver or kidney disease, electrolyte and acid/base balance, and blood glucose and blood protein levels. Abnormal results, particularly when they are combined, can suggest a problem that needs to be addressed. 

The following tests are included in the CMP: 

  • Albumin: this is a measure of Albumin levels in your blood. Albumin is a protein made by the liver that is responsible for many vital roles including transporting nutrients throughout the body and preventing fluid from leaking out of blood vessels. 

  • Albumin/Globulin Ratio: this is a ratio between your total Albumin and Globulin  

  • Alkaline Phosphatase: this is a measure of Alkaline phosphatase or ALP in your blood. Alkaline phosphatase is a protein found in all body tissues, however the ALP found in blood comes from the liver and bones. Elevated levels are often associated with liver damage, gallbladder disease, or bone disorder. 

  • Alt: this is a measure of Alanine transaminase or ALT in your blood. Alanine Aminotransferase is an enzyme found in the highest amounts in the liver with small amounts in the heart and muscles. Elevated levels are often associated with liver damage. 

  • AST: this is a measure of Aspartate Aminotransferase or AST. Aspartate Aminotransferase is an enzyme found mostly in the heart and liver, with smaller amounts in the kidney and muscles. Elevated levels are often associated with liver damage. 

  • Bilirubin, Total: this is a measure of bilirubin in your blood. Bilirubin is an orange-yellowish waste product produced from the breakdown of heme which is a component of hemoglobin found in red blood cells. The liver is responsible for removal of bilirubin from the body. 

  • Bun/Creatinine Ratio: this is a ratio between your Urea Nitrogen (BUN) result and Creatinine result.  

  • Calcium: this is a measurement of calcium in your blood. Calcium is the most abundant and one of the most important minerals in the body as it essential for proper nerve, muscle, and heart function. 

  • Calcium: is used for blood clot formation and the formation and maintenance of bones and teeth. 

  • Carbon Dioxide: this is a measure of carbon dioxide in your blood. Carbon dioxide is a negatively charged electrolyte that works with other electrolytes such as chloride, potassium, and sodium to regulate the body’s acid-base balance and fluid levels.  

  • Chloride: this is a measure of Chloride in your blood. Chloride is a negatively charged electrolyte that works with other electrolytes such as potassium and sodium to regulate the body’s acid-base balance and fluid levels. 

  • Creatinine: this is a measure of Creatinine levels in your blood. Creatinine is created from the breakdown of creatine in your muscles and is removed from your body by the kidneys. Elevated creatinine levels are often associated with kidney damage. 

  • Egfr African American: this is a measure of how well your kidneys are functioning. Glomeruli are tiny filters in your kidneys that filter out waste products from your blood for removal while retaining important substances such as nutrients and blood cells. 

  • Egfr Non-Afr. American: this is a measure of how well your kidneys are functioning. Glomeruli are tiny filters in your kidneys that filter out waste products from your blood for removal while retaining important substances such as nutrients and blood cells. 

  • Globulin: this is a measure of all blood proteins in your blood that are not albumin. 

  • Glucose: this is a measure of glucose in your blood. Glucose is created from the breakdown of carbohydrates during digestion and is the body’s primary source of energy. 

  • Potassium: this is a measure of Potassium in your blood. Potassium is an electrolyte that plays a vital role in cell metabolism, nerve and muscle function, and transport of nutrients into cells and removal of wastes products out of cells. 

  • Protein, Total: this is a measure of total protein levels in your blood. 
    Sodium: this is a measure of Sodium in your blood. Sodium is an electrolyte that plays a vital role in nerve and muscle function. 

  • Urea Nitrogen (Bun): this is a measure of Urea Nitrogen in your blood, also known as Blood UreaNitrogen (BUN). Urea is a waste product created in the liver when proteins are broken down into amino acids. Elevated levels are often associated with kidney damage. 

Lab tests often ordered with a Comprehensive Metabolic Panel test: 

  • Complete Blood Count with Differential and Platelets
  • Iron and Total Iron Binding Capacity
  • Lipid Panel
  • Vitamin B12 and Folate
  • Prothrombin with INR and Partial Thromboplastin Times
  • Sed Rate (ESR)
  • C-Reactive Protein

Conditions where a Comprehensive Metabolic Panel test is recommended: 

  • Diabetes
  • Kidney Disease
  • Liver Disease
  • Hypertension

Commonly Asked Questions: 

How does my health care provider use a Comprehensive Metabolic Panel test? 

The comprehensive metabolic panel (CMP) is a broad screening tool for assessing organ function and detecting diseases like diabetes, liver disease, and kidney disease. The CMP test may also be requested to monitor known disorders such as hypertension and to check for any renal or liver-related side effects in persons taking specific drugs. If a health practitioner wants to follow two or more separate CMP components, the full CMP might be ordered because it contains more information. 

What do my Comprehensive Metabolic Panel test results mean? 

The results of the tests included in the CMP are usually analyzed together to look for patterns. A single abnormal test result may indicate something different than a series of abnormal test findings. A high result on one of the liver enzyme tests, for example, is not the same as a high result on several liver enzyme tests. 

Several sets of CMPs, frequently performed on various days, may be examined to gain insights into the underlying disease and response to treatment, especially in hospitalized patients. 

Out-of-range findings for any of the CMP tests can be caused by a variety of illnesses, including kidney failure, breathing issues, and diabetes-related complications, to name a few. If any of the results are abnormal, one or more follow-up tests are usually ordered to help determine the reason and/or establish a diagnosis. 

Is there anything else I should know? 

A wide range of prescription and over-the-counter medications can have an impact on the results of the CMP's components. Any medications you're taking should be disclosed to your healthcare professional. Similarly, it is critical to provide a thorough history because many other circumstances can influence how your results are interpreted. 

What's the difference between the CMP and the BMP tests, and why would my doctor choose one over the other? 

The CMP consists of 14 tests, while the basic metabolic panel (BMP) is a subset of those with eight tests. The liver (ALP, ALT, AST, and bilirubin) and protein (albumin and total protein) tests are not included. If a healthcare provider wants a more thorough picture of a person's organ function or to check for specific illnesses like diabetes or liver or kidney disease, he or she may prescribe a CMP rather than a BMP. 

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.

Please note the following regarding BUN/Creatinine ratio: 

The lab does not report the calculation for the BUN/Creatinine Ratio unless one or both biomarkers’ results fall out of the published range. 

If you still wish to see the value, it's easy to calculate. Simply take your Urea Nitrogen (BUN) result and divide it by your Creatinine result.  

As an example, if your Urea Nitrogen result is 11 and your Creatinine result is 0.86, then you would divide 11 by 0.86 and get a BUN/Creatinine Ratio result of 12.79. 


Cortisol is increased in Cushing's disease and decreased in Addison's disease (adrenal insufficiency).

Cortisol is increased in Cushing's disease and decreased in Addison's disease (adrenal insufficiency).

Cortisol is increased in Cushing's disease and decreased in Addison's disease (adrenal insufficiency). This test requires 5 individual serum blood specimens to be drawn; 30 minutes apart. Patient should plan for 3 hours at the patient service center.


Cortisol is increased in Cushing's disease and decreased in Addison's disease (adrenal insufficiency).


Most Popular

Description: A cortisol test measures the amount of cortisol in the blood. These levels will start off high in the morning and throughout the say they become lower. At midnight they are typically at their lowest level. Someone who works a night shift or has an irregular sleep schedule may have a different pattern. This test can be used to determine Cushing's or Addison's Disease.

Also Known As: Cortisol AM Test, Cortisol Total Test, Cortisol Test, Cortisol Blood Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: Specimen must be drawn between 7 a.m. and 9 a.m. Test is not recommended for patients receiving prednisone/prednisolone therapy due to cross reactivity with the antibody used in this test.

When is a Cortisol AM test ordered?

When a person has symptoms that point to a high level of cortisol and Cushing syndrome, a cortisol test may be recommended.

Women with irregular menstrual periods and increased facial hair may be tested, and children with delayed development and small stature may also be tested.

When someone exhibits symptoms that point to a low cortisol level, adrenal insufficiency, or Addison disease, this test may be ordered.

What does a Cortisol AM blood test check for?

Cortisol is a hormone that plays a function in protein, lipid, and carbohydrate metabolism. It has an effect on blood glucose levels, blood pressure, and immune system regulation. Only a small fraction of cortisol in the blood is "free" and biologically active; the majority is attached to a protein. Cortisol is a hormone that is produced into the urine and found in the saliva. This test determines how much cortisol is present in the blood, urine, or saliva.

Cortisol levels in the blood usually rise and fall in a pattern known as "diurnal variation." It reaches its highest point early in the morning, then gradually decreases over the day, reaching its lowest point around midnight. When a person works irregular shifts and sleeps at different times of the day, this rhythm might fluctuate, and it can be disrupted when a disease or condition inhibits or stimulates cortisol production.

The adrenal glands, two triangle organs that sit on top of the kidneys, generate and emit cortisol. The hypothalamus in the brain and the pituitary gland, a small organ below the brain, control the hormone's production. The hypothalamus produces corticotropin-releasing hormone when blood cortisol levels drop, which tells the pituitary gland to create ACTH. The adrenal glands are stimulated by ACTH to generate and release cortisol. A certain amount of cortisol must be produced for normal adrenal, pituitary gland, and brain function.

Cushing syndrome is a collection of signs and symptoms associated with an unusually high cortisol level. Cortisol production may be increased as a result of:

  • Large doses of glucocorticosteroid hormones are given to treat a range of ailments, including autoimmune illness and certain cancers.
  • Tumors that produce ACTH in the pituitary gland and/or other regions of the body.
  • Cortisol production by the adrenal glands is increased as a result of a tumor or abnormal expansion of adrenal tissues.

Rarely, CRH-producing malignancies in various regions of the body.

Cortisol production may be reduced as a result of:

  • Secondary adrenal insufficiency is caused by an underactive pituitary gland or a pituitary gland tumor that prevents ACTH production.
  • Primary adrenal insufficiency, often known as Addison disease, is characterized by underactive or injured adrenal glands that limit cortisol production.

After quitting glucocorticosteroid hormone medication, especially if it was abruptly stopped after a long time of use.

Lab tests often ordered with a Cortisol AM test:

  • Cortisol PM
  • ACTH
  • Aldosterone
  • 17-Hydroxyprogesterone
  • Growth Hormone

Conditions where a Cortisol AM test is recommended:

  • Addison’s Disease
  • Cushing’s Syndrome
  • Endocrine Syndromes
  • Hypertension
  • Pituitary Disorders

How does my health care provider use a Cortisol AM test?

A cortisol test can be used to detect Cushing syndrome, which is characterized by an excess of cortisol, as well as adrenal insufficiency or Addison disease, which are characterized by a deficiency of cortisol. Among other things, the hormone cortisol controls how proteins, lipids, and carbohydrates are metabolized. Cortisol levels in the blood normally increase and fall in a "diurnal variation" pattern, rising early in the morning, dropping during the day, and reaching their lowest point around midnight.

The adrenal glands generate and excrete cortisol. The hypothalamus in the brain and the pituitary gland, a small organ below the brain, control the hormone's production. The hypothalamus produces corticotropin-releasing hormone when blood cortisol levels drop, which tells the pituitary gland to create ACTH. Cortisol production and release are triggered by ACTH in the adrenal glands. A certain amount of cortisol must be produced for normal brain, pituitary, and adrenal gland function.

Only a small fraction of cortisol in the blood is "free" and biologically active; the majority is attached to a protein. Blood cortisol testing assesses both protein-bound and free cortisol, but urine and saliva cortisol testing assesses only free cortisol, which should be in line with blood cortisol levels. Multiple blood and/or saliva cortisol levels collected at various times, such as 8 a.m. and 4 p.m., can be used to assess cortisol levels and diurnal variation. A 24-hour urine cortisol sample will not reveal diurnal variations; instead, it will assess the total quantity of unbound cortisol voided over the course of 24 hours.

If an elevated amount of cortisol is found, a health professional will conduct additional tests to confirm the results and discover the cause.

If a person's blood cortisol level is abnormally high, a doctor may order additional tests to be sure the high cortisol is indeed abnormal. Additional testing could involve monitoring 24-hour urinary cortisol, doing an overnight dexamethasone suppression test, and/or obtaining a salivary sample before sleep to detect cortisol at its lowest level. Urinary cortisol testing necessitates collecting urine over a set length of time, usually 24 hours. Because ACTH is released in pulses by the pituitary gland, this test can assist evaluate whether a raised blood cortisol level is a true rise.

An ACTH stimulation test may be ordered if a health practitioner feels that the adrenal glands are not releasing enough cortisol or if initial blood tests reveal insufficient cortisol production.

The purpose of ACTH stimulation is to compare the levels of cortisol in a person's blood before and after receiving an injection of synthetic ACTH. If the adrenal glands are healthy, the reaction to ACTH stimulation will be an increase in cortisol levels. Low amounts of cortisol will result if they are broken or not functioning properly. To distinguish between adrenal and pituitary insufficiency, a lengthier variant of this test can be used.

What do my Cortisol AM test results mean?

Cortisol levels are typically lowest before bedtime and highest shortly after awakening, though this pattern can be disrupted if a person works rotating shifts and sleeps at various times on separate days.

Excess cortisol and Cushing syndrome are indicated by an increased or normal cortisol level shortly after awakening, as well as a level that does not diminish by bedtime. If the excess cortisol is not suppressed after an overnight dexamethasone suppression test, the 24-hour urine cortisol is elevated, or the late-night salivary cortisol level is elevated, the excess cortisol is likely due to abnormal increased ACTH production by the pituitary or a tumor outside of the pituitary, or abnormal production by the adrenal glands. Additional tests will aid in determining the root of the problem.

If the subject of the examination reacts to an ACTH stimulation test and has insufficient cortisol levels, the issue is most likely brought on by the pituitary's insufficient production of ACTH. The adrenal glands are most likely the source of the issue if the subject does not react to the ACTH stimulation test.

 

An additional test, like as a CT scan, may be used by the medical professional to evaluate the degree of any gland damage once an irregularity has been identified and related to the pituitary gland, the adrenal glands, or another cause.

Important: Patient needs to have the specimen collected between 7 a.m.-9 a.m.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Most Popular

Cortisol is increased in Cushing's Disease and decreased in Addison's Disease (adrenal insufficiency). Patient needs to have the specimen collected between 3 p.m - 5 p.m.


Most Popular

Description: A cortisol test measures the amount of cortisol in the blood. These levels will start off high in the morning and throughout the say they become lower. At midnight they are typically at their lowest level. Someone who works a night shift or has an irregular sleep schedule may have a different pattern. This test can be used to determine Cushing's or Addison's Disease.

Also Known As: Cortisol Total Test, Cortisol Test, Cortisol Blood Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: Test not recommended when patient is on prednisone/prednisolone therapy due to cross reactivity with the antibody used in this test

When is a Cortisol Total test ordered?

When a person has symptoms that point to a high level of cortisol and Cushing syndrome, a cortisol test may be recommended.

Women with irregular menstrual periods and increased facial hair may be tested, and children with delayed development and small stature may also be tested.

When someone exhibits symptoms that point to a low cortisol level, adrenal insufficiency, or Addison disease, this test may be ordered.

What does a Cortisol Total blood test check for?

Cortisol is a hormone that plays a function in protein, lipid, and carbohydrate metabolism. It has an effect on blood glucose levels, blood pressure, and immune system regulation. Only a small fraction of cortisol in the blood is "free" and biologically active; the majority is attached to a protein. Cortisol is a hormone that is produced into the urine and found in the saliva. This test determines how much cortisol is present in the blood, urine, or saliva.

Cortisol levels in the blood usually rise and fall in a pattern known as "diurnal variation." It reaches its highest point early in the morning, then gradually decreases over the day, reaching its lowest point around midnight. When a person works irregular shifts and sleeps at different times of the day, this rhythm might fluctuate, and it can be disrupted when a disease or condition inhibits or stimulates cortisol production.

The adrenal glands, two triangle organs that sit on top of the kidneys, generate and emit cortisol. The hypothalamus in the brain and the pituitary gland, a small organ below the brain, control the hormone's production. The hypothalamus produces corticotropin-releasing hormone when blood cortisol levels drop, which tells the pituitary gland to create ACTH. The adrenal glands are stimulated by ACTH to generate and release cortisol. The brain, pituitary, and adrenal glands must all be operating properly in order to produce enough levels of cortisol.

Cushing syndrome is a collection of signs and symptoms associated with an unusually high cortisol level. Cortisol production may be increased as a result of:

  • Large doses of glucocorticosteroid hormones are given to treat a range of ailments, including autoimmune illness and certain cancers.
  • Tumors that produce ACTH in the pituitary gland and/or other regions of the body.
  • Cortisol production by the adrenal glands is increased as a result of a tumor or abnormal expansion of adrenal tissues.

Rarely, CRH-producing malignancies in various regions of the body.

Cortisol production may be reduced as a result of:

  • Secondary adrenal insufficiency is caused by an underactive pituitary gland or a pituitary gland tumor that prevents ACTH production.
  • Primary adrenal insufficiency, often known as Addison disease, is characterized by underactive or injured adrenal glands that limit cortisol production.

After quitting glucocorticosteroid hormone medication, especially if it was abruptly stopped after a long time of use.

Lab tests often ordered with a Cortisol Total test:

  • Cortisol PM
  • Cortisol AM
  • Cortisol Saliva
  • ACTH
  • Aldosterone
  • 17-Hydroxyprogesterone
  • Growth Hormone

Conditions where a Cortisol Test is recommended:

  • Addison’s Disease
  • Cushing’s Syndrome
  • Endocrine Syndromes
  • Hypertension
  • Pituitary Disorders

How does my health care provider use a Cortisol Total test?

A cortisol test can be used to detect Cushing syndrome, which is characterized by an excess of cortisol, as well as adrenal insufficiency or Addison disease, which are characterized by a deficiency of cortisol. Cortisol is a hormone that regulates protein, lipid, and carbohydrate metabolism, among other functions. Cortisol levels in the blood normally increase and fall in a "diurnal variation" pattern, rising early in the morning, dropping during the day, and reaching their lowest point around midnight.

The adrenal glands generate and excrete cortisol. The hypothalamus in the brain and the pituitary gland, a small organ below the brain, control the hormone's production. The hypothalamus produces corticotropin-releasing hormone when blood cortisol levels drop, which tells the pituitary gland to create ACTH. The adrenal glands are stimulated by ACTH to generate and release cortisol. The brain, pituitary, and adrenal glands must all be operating properly in order to produce enough levels of cortisol.

Only a small fraction of cortisol in the blood is "free" and biologically active; the majority is attached to a protein. Blood cortisol testing assesses both protein-bound and free cortisol, but urine and saliva cortisol testing assesses only free cortisol, which should be in line with blood cortisol levels. Multiple blood and/or saliva cortisol levels collected at various times, such as 8 a.m. and 4 p.m., can be used to assess cortisol levels and diurnal variation. A 24-hour urine cortisol sample will not reveal diurnal variations; instead, it will assess the total quantity of unbound cortisol voided over the course of 24 hours.

If an elevated amount of cortisol is found, a health professional will conduct additional tests to confirm the results and discover the cause.

If a person's blood cortisol level is abnormally high, a doctor may order additional tests to be sure the high cortisol is indeed abnormal. Additional testing could involve monitoring 24-hour urinary cortisol, doing an overnight dexamethasone suppression test, and/or obtaining a salivary sample before sleep to detect cortisol at its lowest level. Urinary cortisol testing necessitates collecting urine over a set length of time, usually 24 hours. Because ACTH is released in pulses by the pituitary gland, this test can assist evaluate whether a raised blood cortisol level is a true rise.

An ACTH stimulation test may be ordered if a health practitioner feels that the adrenal glands are not releasing enough cortisol or if initial blood tests reveal insufficient cortisol production.

ACTH stimulation is a test that measures the amount of cortisol in a person's blood before and after a synthetic ACTH injection. Cortisol levels will rise in response to ACTH stimulation if the adrenal glands are functioning normally. Cortisol levels will be low if they are damaged or not working properly. To distinguish between adrenal and pituitary insufficiency, a lengthier variant of this test can be used.

What do my Cortisol Total test results mean?

Cortisol levels are typically lowest before bedtime and highest shortly after awakening, though this pattern can be disrupted if a person works rotating shifts and sleeps at various times on separate days.

Excess cortisol and Cushing syndrome are indicated by an increased or normal cortisol level shortly after awakening, as well as a level that does not diminish by bedtime. If the excess cortisol is not suppressed after an overnight dexamethasone suppression test, the 24-hour urine cortisol is elevated, or the late-night salivary cortisol level is elevated, the excess cortisol is likely due to abnormal increased ACTH production by the pituitary or a tumor outside of the pituitary, or abnormal production by the adrenal glands. Additional tests will aid in determining the root of the problem.

If the person examined responds to an ACTH stimulation test and has insufficient cortisol, the problem is most likely due to insufficient ACTH production by the pituitary. If the person does not respond to the ACTH stimulation test, the problem is most likely to be with the adrenal glands. Secondary adrenal insufficiency occurs when the adrenal glands are underactive as a result of pituitary dysfunction and/or insufficient ACTH synthesis. Adrenal injury causes decreased cortisol production, which is referred to as primary adrenal insufficiency or Addison disease.

Once an irregularity has been found and linked to the pituitary gland, adrenal glands, or another source, the health practitioner may utilize additional testing, such as a CT scan, to determine the extent of any gland damage.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Brief Description: DHEA Sulfate is a blood test that is measuring the levels of Dehydroepiandrosterone Sulfate in the blood. It is often used to diagnose any problems in the adrenal glands such as cancer or a tumor. It can also be used to evaluate the cause of early puberty in young boys and male characteristics or appearance in women.

Also Known As: DHEA-SO4 Test, DHEAS Test, DHES1 Test, Dehydroepiandrosterone Sulfate Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is a DHEA Sulfate test ordered?

When excess androgen production is suspected and/or a health practitioner wants to analyze a person's adrenal gland function, a DHEAS test, along with other hormone testing, may be requested.

It can be assessed when a woman exhibits signs and symptoms of amenorrhea, infertility, and/or virilization. The intensity of these alterations varies, but they may include:

  • A huskier voice
  • Hair on the face or on the body that is excessive
  • Baldness in men
  • Muscularity
  • Acne
  • The Adam's apple has been enlarged
  • Breast size has shrunk

It may also be ordered if a young girl exhibits evidence of virilization or if a female infant's external genitalia are not clearly male or female.

When young males show indicators of premature puberty, such as a deeper voice, pubic hair, muscularity, and an enlarged penis before the age of typical puberty, DHEAS may be evaluated.

What does a DHEA Sulfate blood test check for?

Male sex hormone dehydroepiandrosterone sulfate is found in both men and women. This test determines the amount of DHEAS in your blood.

DHEAS:

  • At puberty, it aids in the development of male secondary sexual traits.
  • Can be transformed into more strong androgens like testosterone and androstenedione by the body.
  • It has the ability to transform into estrogen.

DHEAS is almost entirely produced by the adrenal glands, with minor contributions from a woman's ovaries and a man's testicles.

It's a good indicator of how well the adrenal glands are working. Overproduction of DHEAS can be caused by malignant and non-cancerous adrenal tumors, as well as adrenal hyperplasia. DHEAS can be produced by an ovarian tumor in rare cases.

DHEAS excess:

  • In adult men, it may go unnoticed.
  • In young boys, it can cause early puberty.
  • Menstrual irregularities and the development of masculine physical traits in girls and women, such as excess body and facial hair
  • Can result in a female infant being born with genitals that aren't clearly male or female

Lab tests often ordered with a DHEA Sulfate test:

  • Testosterone
  • ACTH
  • FSH
  • LH
  • Prolactin
  • Estrogen
  • Estradiol
  • Sex Hormone Binding Globulin
  • 17-Hydroxyprogesterone
  • Androstenedione

Conditions where a DHEA Sulfate test is recommended:

  • PCOS
  • Infertility
  • Endocrine Syndromes
  • Adrenal Insufficiency
  • Congenital Adrenal Hyperplasia

How does my health care provider use a DHEA Sulfate test?

The dehydroepiandrosterone sulfate test is ordered in conjunction with testosterone and other male hormones assays to:

  • Examine the adrenal glands' performance.
  • Differentiate DHEAS-secreting disorders produced by the adrenal glands from those caused by the testicles or, in rare cases, the ovaries
  • Adrenocortical tumors and adrenal malignancies can be diagnosed with this test.
  • Assist in the diagnosis of congenital and adult-onset adrenal hyperplasia.

DHEAS levels are frequently examined in women, along with other hormones like FSH, LH, prolactin, estrogen, and testosterone, to help diagnose polycystic ovarian syndrome and rule out other reasons of infertility, lack of monthly cycle, and excess facial and body hair.

DHEAS levels, along with other hormones, may be requested to examine and diagnose the cause of young females developing masculine physical traits and young boys developing early puberty.

What do my DHEA-S test results mean?

A normal DHEAS level, together with other normal male hormone levels, suggests that the adrenal gland is working properly. When an adrenal tumor or cancer is present but not secreting hormones, DHEAS may be normal.

A high DHEAS blood level could indicate that the person's symptoms are caused or exacerbated by excessive DHEAS production. An elevated level of DHEAS, on the other hand, is not used to make a diagnosis of any particular condition; rather, it usually signals that further testing is required to determine the source of the hormone imbalance. An adrenocortical tumor, Cushing illness, adrenal cancer, or adrenal hyperplasia, as well as a DHEAS-producing ovarian tumor, can all cause high DHEAS.

DHEAS levels may be high in polycystic ovary syndrome, but they may also be normal, as PCOS is usually associated with ovarian androgen production.

Adrenal insufficiency, adrenal dysfunction, Addison disease, or hypopituitarism, a disorder characterized by low levels of pituitary hormones that govern the generation and secretion of adrenal hormones, can all produce low DHEAS levels.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


DHT is a potent androgen derived from testosterone via 5-alpha-reductase activity. 5-alpha-reductase deficiency results in incompletely virilized males (phenotypic females). This diagnosis is supported by an elevated ratio of testosterone to DHT.

Most Popular

Description: Estradiol is a blood test that is used to measure the levels of Estradiol in the blood's serum. Estradiol is one of the Estrogen hormones in the body.  Estradiol, Ultrasensitive LC/MS/MS #30289 is a more appropriate test for children that have not yet started a menstrual cycle.

Also Known As: E2 Test, Estrogen 2 Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is an Estradiol test ordered?

Tests for estradiol for women may be ordered if:

  • After menopause, a woman may experience symptoms such as abnormal vaginal bleeding or irregular or absent menstrual cycles.
  • When a woman is unable to conceive, a series of estradiol readings taken over the course of her menstrual cycle may be used to track follicle development before using in vitro fertilization procedures
  • A woman is experiencing menopause symptoms such as hot flashes, night sweats, sleeplessness, and/or irregular or absent menstrual cycles.
  • If a menopausal woman is on hormone replacement therapy, her doctor may order estrone levels on a regular basis to check her progress.

Men and young boys may be subjected to estradiol testing if:

  • A boy's puberty is delayed, as evidenced by slow or delayed growth of testicles and penis, as well as a lack of deepening of voice or growth of body hair.
  • Signs of feminization, such as larger breasts.

What does an Estradiol blood test check for?

Estradiol, or E2, is a component of Estrogen that is present in the blood. For women, Estradiol is something that should be produced naturally, and the body produces larger amounts of Estradiol during puberty and it fluctuates throughout the menstrual cycle. Estradiol is most prominent in women of reproductive age. Low levels are common in girls who have not yet had their first menstrual cycle and in women after their reproductive age.

Lab tests often ordered with an Estradiol test:

  • Estrogen, Total, Serum
  • Estriol
  • Estrone
  • Testosterone Free and Total
  • Sex Hormone Binding Globulin
  • FSH
  • LH
  • Progesterone

Conditions where an Estradiol test is recommended:

  • Infertility
  • Menopause
  • Polycystic Ovarian Syndrome
  • Hormone Imbalance
  • Premature, delayed, or abnormal development of sex organs

Commonly Asked Questions:

How does my health care provider use an Estradiol test?

Estrogen tests are used to detect a deficit or excess of estrogen in a woman, as well as to aid in the diagnosis of a range of illnesses linked to this imbalance. They may also be ordered to monitor the health of the growing fetus and placenta during pregnancy, as well as to help predict the timing of a woman's ovulation. Estrogen testing can be used to detect a hormone excess and its origin in men.

In the case of girls and women

Estradiol testing may be requested for the following reasons:

  • Diagnose early-onset puberty, which occurs when a girl develops secondary sex traits much earlier than anticipated, or late puberty, which occurs when a female develops secondary sex characteristics or begins menstruation later than predicted.
  • Examine menstrual irregularities such as the absence of menstrual periods, infertility, and unusual vaginal bleeding.
  • Evaluate ovary function and look for signs of ovarian failure.
  • Serial measurements of estradiol can be used to track follicle development in the ovary in the days leading up to in vitro fertilization.
  • Keep track of any hormone replacement therapy you're getting to help with your fertility.
  • Keep track of menopausal hormone replacement medication, which is used to treat symptoms caused by estrogen insufficiency.
  • Identify cancers that produce estrogen.
  • As with breast cancer, keep an eye on anti-estrogen therapy.

Boys and men may be subjected to estradiol testing in order to:

  • Assist in the diagnosis of delayed puberty
  • Assist in determining the cause of larger breasts or other feminization indications.
  • Detect an excess of relative estrogen due to a testosterone or androgen deficit.
  • Identify cancers that produce estrogen.

What do my Estradiol test results mean?

Estradiol is one of the three Estrogens that have a large impact on the women's body throughout the menstrual cycle. When these hormones are too high or too low, it could cause irregular bleeding, infertility, complications with menopause, and delayed or premature puberty. Out of range levels can also be indicative of an ovarian condition such as PCOS. It is important to note that these values will fluctuate throughout a woman's cycle. The Estrogen hormones work together and if one is out of range, the others may also be out of range. It is recommended to follow up with a licensed healthcare professional to determine the best treatment if need.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.

IMPORTANT - Note this Estradiol test is not for children that have yet to start their menstrual cycle.  If this test is ordered for a child that has yet to begin their menstrual cycle Quest Diagnostics labs will substitute in Estradiol, Ultrasensitive LC/MS/MS - #30289 at an additional charge of $34


Most Popular

Description: A Follicle Stimulating Hormone, or FSH, test is a blood test that measures the levels of FSH in the blood. This can be used to diagnose conditions related to the sex organs, early or late puberty, or a condition affecting the pituitary or hypothalamus. It is also used to predict ovulation, evaluate infertility and monitor during infertility treatment. Levels that are out of range can help, along with several other hormone test, to evaluate the cause of irregular menstrual cycles.

A Luteinizing Hormone, or LH, Test is a test that measures the level of the LH in the blood. It is used to predict ovulation, evaluate infertility and monitor during infertility treatment, or identify a pituitary disorder. It can also help along with several other hormone test to evaluate the cause of irregular menstrual cycles.

Also Known As: Follicle Stimulating Hormone test, Follitropin Test, Luteinizing Hormone Test, Lutropin Test, Interstitial Cell Stimulating Hormone Test, ICSH Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is a FSH and LH test ordered?

An FSH and LH test may be recommended for a woman if she is having trouble conceiving or has irregular or absent menstrual periods.

When a woman's menstrual cycle has ended or grown erratic, FSH and LH may be ordered to see if she has entered menopause.

When a man's spouse is unable to conceive, when he has a low sperm count, or when he has low muscle mass or diminished sex drive, for example, the test may be ordered.

When a health care provider detects a pituitary issue in a woman or a man, testing may be ordered. Because a pituitary problem can disrupt the production of a variety of hormones, other signs and symptoms may appear in addition to those described above. Fatigue, weakness, unexpected weight loss, and decreased appetite are just a few examples.

What does a FSH and LH blood test check for?

FSH and LH are hormones linked to production and the development of eggs and sperm in both men and women. FSH and LH is measured in the blood.

The pituitary gland produces FSH and LH. The hypothalamus in the brain, the pituitary gland, and hormones generated by the ovaries or testicles all work together to control FSH and LH production. The hypothalamus secretes gonadotropin-releasing hormone, which causes the pituitary to secrete FSH and luteinizing hormone.

During the follicular phase of the menstrual cycle, FSH and LH increases the growth and maturation of eggs in the ovaries in women. The menstrual cycle is divided into two phases: follicular and luteal, each lasting approximately 14 days. During this follicular phase, FSH triggers the follicle's synthesis of estradiol, and the two hormones collaborate to help the egg follicle develop further. A surge of FSH and luteinizing hormone occurs near the end of the follicular period. Shortly after this burst of hormones, the egg is released from the ovary. The hormones inhibin, estradiol, and progesterone all help the pituitary gland regulate the quantity of FSH released. FSH also improves the ovary's ability to respond to LH.

Ovarian function declines and eventually quits as a woman matures and approaches menopause. FSH and LH levels rise as a result of this.

FSH induces the development of mature sperm in men's testicles, as well as the production of androgen binding proteins. After adolescence, men's FSH levels remain rather steady.

FSH levels rise early after birth in infants and children, and then quickly fall to low levels by 6 months of age in boys and  around 1 and half years of age in girls. Before puberty and the development of secondary sexual characteristics, FSH levels begin to rise again.

The production of too much or too little FSH and LH can be caused by disorders affecting the brain, pituitary, ovaries, or testicles, resulting in infertility, irregular menstrual cycles, or early or delayed sexual development.

Lab tests often ordered with a FSH and LH test:

  • Estrogen
  • Estradiol
  • Testosterone
  • Progesterone
  • Androstenedione
  • Sperm Analysis
  • Anti-Mullerian Hormone
  • Prolactin
  • Sex Hormone Binding Globulin

Conditions where a FSH and LH test is recommended:

  • Infertility
  • Menopause
  • Pituitary Disorders
  • Endocrine Syndromes
  • PCOS

How does my health care provider use a FSH and LH test?

There are various applications for the follicle-stimulating hormone and luteinizing hormone test, which are hormones linked to reproduction and the development of eggs in women and sperm in men.

The test can be used with additional hormone assays including luteinizing hormone, testosterone, estradiol, and/or progesterone in both women and men to help:

  • Find out what's causing infertility.
  • Diagnose conditions involving ovarian or testicular dysfunction.
  • Aid in the diagnosis of diseases of the pituitary or hypothalamus, which can impact FSH production.

FSH and LH levels are also relevant in women for:

  • Menstrual irregularities are being investigated.
  • Menopause start or confirmation prediction

FSH and LH levels in males are used to determine the cause of a low sperm count.

FSH and LH are used to identify delayed or early puberty in children. Puberty timing irregularities could indicate a more significant disease involving the hypothalamus, pituitary gland, ovaries, testicles, or other systems. LH and FSH levels can help distinguish between benign symptoms and real disease. Once it's been determined that the symptoms are due to an actual condition, more testing can be done to figure out what's causing them.

What do my FSH and LH test results mean?

FSH and LH test findings are frequently combined with those from other hormone testing estrogens, and/or testosterone.

A high or low FSH level as part of an infertility workup is not diagnostic, but it does provide some insight into the cause. A hormone imbalance, for example, can influence a woman's menstrual cycle and/or ovulation. To make a diagnosis, a doctor will take into account all of the information gathered during the examination.

Women's Health

  • FSH and LH levels can assist distinguish between primary ovarian failure and secondary ovarian failure.
  • Primary ovarian failure is associated with high levels of FSH and LH.
  • Low FSH and LH levels are indicative of secondary ovarian failure caused by a pituitary or hypothalamic issue. Low FSH levels in the blood have been linked to an increased risk of ovarian cancer.

Men's Health

  • Primary testicular failure causes high FSH levels. As shown below, this can be the result of developmental problems in testicular growth or testicular damage.
  • Low levels are indicative of pituitary or hypothalamic dysfunction.

Children's Health

  • Precocious puberty is defined by high levels of FSH and LH, as well as the development of secondary sexual traits at an extremely young age. This occurs far more frequently in girls than in boys. This abnormal development is usually caused by a problem with the central nervous system, which can have a variety of causes.
  • Normal prepubescent LH and FSH levels in children who are showing signs of pubertal alterations could suggest a syndrome known as "precocious pseudopuberty."
  • For children with delayed puberty, LH and FSH levels can be normal or below what is expected for children of their age.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Most Popular

Description: A Glucose test is a blood test used to screen for, diagnose, and monitor conditions that affect glucose levels such as prediabetes, diabetes, hyperglycemia, and hypoglycemia.

Also Known As: Fasting Blood Glucose Test, FBG Test, Fasting Blood Sugar Test, FBS Test, Fasting Glucose Test, FG Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: Fasting required

When is a Glucose test ordered?

Diabetes screening is recommended by several health groups, including the American Diabetes Association and the United States Preventive Services Task Force, when a person is 45 years old or has risk factors.

The ADA recommends retesting within three years if the screening test result is within normal limits, but the USPSTF recommends testing once a year. Annual testing may be used to monitor people with prediabetes.

When someone exhibits signs and symptoms of high blood glucose, a blood glucose test may be conducted.

Diabetics are frequently asked to self-check their glucose levels multiple times a day in order to monitor glucose levels and choose treatment alternatives as suggested by their doctor. Blood glucose levels may be ordered on a regular basis, along with other tests such as A1c, to track glucose control over time.

Unless they show early symptoms or have had gestational diabetes in a prior pregnancy, pregnant women are routinely screened for gestational diabetes between the 24th and 28th week of pregnancy. If a woman is at risk of type 2 diabetes, she may be tested early in her pregnancy, according to the American Diabetes Association. When a woman has type 1, type 2, or gestational diabetes, her health care provider will normally order glucose levels to monitor her condition throughout the duration of her pregnancy and after delivery.

What does a Glucose blood test check for?

A fasting glucose test measures glucose. Glucose is the major energy source for the body's cells and the brain and nervous system's only source of energy. A consistent supply must be provided, and a somewhat constant level of glucose in the blood must be maintained. The glucose level in the blood can be measured using a variety of methods. 

Fruits, vegetables, breads, and other carbohydrate-rich foods are broken down into glucose during digestion, which is absorbed by the small intestine and circulated throughout the body. Insulin, a hormone generated by the pancreas, is required for the use of glucose for energy production. Insulin promotes glucose transport into cells and instructs the liver to store surplus energy as glycogen for short-term storage or triglycerides in adipose cells.

Normally, blood glucose rises slightly after you eat or drink, and the pancreas responds by releasing insulin into the blood, the amount of which is proportional to the size and substance of the meal. The level of glucose in the blood declines as glucose enters the cells and is digested, and the pancreas responds by delaying, then ceasing the secretion of insulin.

When blood glucose levels fall too low, such as between meals or after a strong activity, glucagon is released, which causes the liver to convert some glycogen back into glucose, so boosting blood glucose levels. The level of glucose in the blood remains pretty steady if the glucose/insulin feedback loop is working appropriately. When the balance is upset and the blood glucose level rises, the body strives to restore it by boosting insulin production and removing excess glucose through the urine.

Several diseases can cause the equilibrium between glucose and pancreatic hormones to be disrupted, resulting in high or low blood glucose. Diabetes is the most common cause. Diabetes is a collection of illnesses characterized by inadequate insulin production and/or insulin resistance. Untreated diabetes impairs a person's ability to digest and utilize glucose normally. Type 1 diabetes is diagnosed when the body is unable to produce any or enough insulin. People with prediabetes or type 2 diabetes are insulin resistant and may or may not be able to produce enough of the hormone.

Organ failure, brain damage, coma, and, in extreme situations, death can result from severe, sudden fluctuations in blood glucose, either high or low. Chronically high blood glucose levels can harm body organs like the kidneys, eyes, heart, blood vessels, and nerves over time. Hypoglycemia can harm the brain and nerves over time.

Gestational diabetes, or hyperglycemia that exclusively arises during pregnancy, can affect some women. If left untreated, this can result in large babies with low glucose levels being born to these mothers. Women with gestational diabetes may or may not acquire diabetes later in life.

Lab tests often ordered with a Glucose test:

  • Complete Blood Count
  • Iron Total and Total Iron binding capacity
  • Hemoglobin A1c
  • Lipid Panel
  • Urinalysis Complete
  • TSH
  • CMP
  • Insulin
  • Microalbumin
  • Fructosamine
  • C-Peptide

Conditions where a Glucose test is recommended:

  • Diabetes
  • Kidney Disease
  • Insulin Resistance
  • Pancreatic Diseases
  • Hyperglycemia
  • Hypoglycemia

Commonly Asked Questions:

How does my health care provider use a Glucose test?

The blood glucose test can be used for a variety of purposes, including:

  • Detect hyperglycemia and hypoglycemia
  • Screen for diabetes in those who are at risk before symptoms appear; there may be no early indications or symptoms of diabetes in some circumstances. As a result, screening can aid in detecting it and allowing treatment to begin before the illness worsens or complications emerge.
  • Aid in the detection of diabetes, prediabetes, and gestational diabetes.
  • Monitor your blood sugar levels and manage your diabetes

Glucose levels should be monitored in those who have been diagnosed with diabetes.

Between the 24th and 28th week of pregnancy, glucose blood tests are performed to assess pregnant women for gestational diabetes. Pregnant women who have never been diagnosed with diabetes should be screened and diagnosed using either a one-step or two-step strategy, according to the American Diabetes Association and the US Preventive Services Task Force.

Other tests, including diabetic autoantibodies, insulin, and C-peptide, may be used in conjunction with glucose to assist in detecting the reason of elevated glucose levels, differentiate between type 1 and type 2 diabetes, and assess insulin production.

What does my glucose test result mean?

High blood glucose levels are most commonly associated with diabetes, but they can also be caused by a variety of other diseases and ailments.

Hypoglycemia is defined by a drop in blood glucose to a level that triggers nervous system symptoms before affecting the brain. The Whipple triad is a set of three criteria for diagnosing hypoglycemia.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: Hemoglobin A1c is the protein Hemoglobin found in red blood cells, but with glucose attached to it. Hemoglobin A1c is used to check for and monitor diabetes as it shows average blood glucose levels over the past 2 to 3 months.

Also Known As: A1c Test, HbA1c Test, Glycohemoglobin Test, Glycated Hemoglobin Test, Glycosylated Hemoglobin Test, HbA1c Test

Collection Method: Blood Draw

Specimen Type: Whole Blood

Test Preparation: No preparation required

When is a Hemoglobin A1c test ordered?

A1c may be requested as part of a routine physical examination or when a practitioner suspects a patient of having diabetes due to characteristic signs or symptoms of high blood sugar, such as:

  • Increased thirst and fluid intake
  • Increased urination
  • Increase in hunger
  • Fatigue
  • Vision is hazy
  • Infections that take a long time to heal

Adults who are overweight and have the following additional risk factors may consider doing the A1c test:

  • Physically inactive
  • Diabetes in a first-degree relative
  • Race/ethnicity that is at high risk such as African Americans, Latinos, Native Americans, Asian Americans, and Pacific Islanders
  • Blood pressure that is high
  • A lipid profile that is abnormal.
  • Polycystic ovarian syndrome 
  • Cardiovascular disease 
  • Insulin resistance and other conditions links to insulin resistance

People who have not been diagnosed with diabetes but have been assessed to be at an increased risk of developing diabetes should have their A1c levels tested at least once a year.

Monitoring

The A1c test may be performed 2 to 4 times a year, depending on the type of diabetes a person has, how well their diabetes is controlled, and the healthcare provider's recommendations. If diabetics are fulfilling treatment goals and have stable glycemic control, the American Diabetes Association advises A1c testing at least twice a year. A1c may be ordered quarterly when someone is first diagnosed with diabetes or if control isn't good.

What does a Hemoglobin A1c blood test check for?

Hemoglobin A1c, often known as A1c or glycated hemoglobin, is hemoglobin that has been attached to glucose. By assessing the proportion of glycated hemoglobin, the A1c test determines the average quantity of glucose in the blood during the previous 2 to 3 months.

Hemoglobin is a protein present inside red blood cells that transports oxygen.

Glycated hemoglobin is generated in proportion to the amount of glucose in the blood. Once glucose attaches to hemoglobin, it stays there for the duration of the red blood cell's life, which is usually about 120 days. The most common kind of glycated hemoglobin is known as A1c. A1c is created on a daily basis and is gradually removed from the bloodstream as older RBCs die and younger RBCs replace them.

This test can be used to detect and diagnose diabetes, as well as the risk of developing it. According to the American Diabetes Association's standards of medical care in diabetes, diabetes can be diagnosed using either A1c or glucose.

This test can also be used to track the progress of a diabetic patient's treatment. It aids in determining how well a person's glucose levels have been controlled over time by medication. An A1c of less than 7% suggests good glucose control and a lower risk of diabetic complications for the majority of diabetics for monitoring reasons.

Lab tests often ordered with a Hemoglobin A1c test:

  • Complete Blood Count
  • Glucose
  • Frucstosamine
  • Albumin
  • Comprehensive Metabolic Panel
  • Microalbumin w/creatinine
  • Lipid panel

Conditions where a Hemoglobin A1c test is recommended:

  • Type 1 Diabetes
  • Type 2 Diabetes

How does my health care provider use a Hemoglobin A1c test?

Adults can use the hemoglobin A1c test to screen for and diagnose diabetes and prediabetes.

A fasting glucose or oral glucose tolerance test should be done to screen or diagnose diabetes in these instances.

The A1c test is also used to track diabetics' glucose control over time. Diabetics strive to maintain blood glucose levels that are as close to normal as feasible. This helps to reduce the risks of consequences associated with chronically high blood sugar levels, such as progressive damage to body organs such as the kidneys, eyes, cardiovascular system, and nerves. The result of the A1c test depicts the average quantity of glucose in the blood over the previous 2-3 months. This can help diabetics and their healthcare professionals determine whether the steps they're taking to control their diabetes are working or if they need to be tweaked.

A1c is a blood test that is usually used to help newly diagnosed diabetics identify how high their uncontrolled blood glucose levels have been in the previous 2-3 months. The test may be ordered multiple times throughout the control period, and then at least twice a year after that to ensure that good control is maintained.

What does my Hemoglobin A1c test result mean?

HbA1c levels is currently reported as a percentage for monitoring glucose control, and it is suggested that most diabetics try to keep their hemoglobin A1c below 7%. The closer diabetics can keep their A1c to the therapeutic objective of less than 7% without experiencing abnormally low blood glucose, the better their diabetes is controlled. The risk of problems rises as the A1c rises.

However, a person with type 2 diabetes may have an A1c goal set by their healthcare professional. The length of time since diagnosis, the presence of other diseases as well as diabetes complications, the risk of hypoglycemia complications, life expectancy, and whether or not the person has a support system and healthcare resources readily available are all factors that may influence the goal.

For example, a person with heart disease who has had type 2 diabetes for many years without diabetic complications may have a higher A1c target set by their healthcare provider, whereas someone who is otherwise healthy and newly diagnosed may have a lower target set by their healthcare provider as long as low blood sugar is not a significant risk.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: Hemoglobin A1c is the protein Hemoglobin found in red blood cells, but with glucose attached to it. Hemoglobin A1c is used to check for and monitor diabetes as it shows average blood glucose levels over the past 2 to 3 months.

Also Known As: A1c Test, Glycohemoglobin Test, Glycated Hemoglobin Test, Glycosylated Hemoglobin Test, HbA1c Test, Estimated Average Glucose Test

Collection Method: Blood Draw

Specimen Type: Whole Blood

Test Preparation: No preparation required

When is a Hemoglobin A1c with eAG test ordered?

A1c may be requested as part of a routine physical examination or when a practitioner suspects a patient of having diabetes due to characteristic signs or symptoms of high blood sugar, such as:

  • Increased thirst and fluid intake
  • Increased urination
  • Increase in hunger
  • Fatigue
  • Vision is hazy
  • Infections that take a long time to heal

Adults who are overweight and have the following additional risk factors may consider doing the A1c test:

  • Physically inactive
  • Diabetes in a first-degree relative
  • Race/ethnicity that is at high risk such as African Americans, Latinos, Native Americans, Asian Americans, and Pacific Islanders
  • Blood pressure that is high
  • A lipid profile that is abnormal.
  • Polycystic ovarian syndrome 
  • Cardiovascular disease 
  • Insulin resistance and other conditions links to insulin resistance

People who have not been diagnosed with diabetes but have been assessed to be at an increased risk of developing diabetes should have their A1c levels tested at least once a year.

Monitoring

The A1c test may be performed 2 to 4 times a year, depending on the type of diabetes a person has, how well their diabetes is controlled, and the healthcare provider's recommendations. If diabetics are fulfilling treatment goals and have stable glycemic control, the American Diabetes Association advises A1c testing at least twice a year. A1c may be ordered quarterly when someone is first diagnosed with diabetes or if control isn't good.

What does a Hemoglobin A1c with eAG blood test check for?

Hemoglobin A1c, often known as A1c or glycated hemoglobin, is hemoglobin that has been attached to glucose. By assessing the proportion of glycated hemoglobin, the A1c test determines the average quantity of glucose in the blood during the previous 2 to 3 months.

Hemoglobin is a protein present inside red blood cells that transports oxygen.

Glycated hemoglobin is generated in proportion to the amount of glucose in the blood. Once glucose attaches to hemoglobin, it stays there for the duration of the red blood cell's life, which is usually about 120 days. The most common kind of glycated hemoglobin is known as A1c. A1c is created on a daily basis and is gradually removed from the bloodstream as older RBCs die and younger RBCs replace them.

This test can be used to detect and diagnose diabetes, as well as the risk of developing it. According to the American Diabetes Association's standards of medical care in diabetes, diabetes can be diagnosed using either A1c or glucose.

This test can also be used to track the progress of a diabetic patient's treatment. It aids in determining how well a person's glucose levels have been controlled over time by medication. An A1c of less than 7% suggests good glucose control and a lower risk of diabetic complications for the majority of diabetics for monitoring reasons.

eAG may help you understand your A1C value because eAG is a unit similar to what you see regularly through self-monitoring on your meter.

Lab tests often ordered with a Hemoglobin A1c with eAG test:

  • Complete Blood Count
  • Glucose
  • Frucstosamine
  • Albumin
  • Comprehensive Metabolic Panel
  • Microalbumin w/creatinine
  • Lipid panel

Conditions where a Hemoglobin A1c with eAG test is recommended:

  • Type 1 Diabetes
  • Type 2 Diabetes

How does my health care provider use a Hemoglobin A1c with eAG test?

Adults can use the hemoglobin A1c test to screen for and diagnose diabetes and prediabetes.

A fasting glucose or oral glucose tolerance test should be done to screen or diagnose diabetes in these instances.

The A1c test is also used to track diabetics' glucose control over time. Diabetics strive to maintain blood glucose levels that are as close to normal as feasible. This helps to reduce the risks of consequences associated with chronically high blood sugar levels, such as progressive damage to body organs such as the kidneys, eyes, cardiovascular system, and nerves. The result of the A1c test depicts the average quantity of glucose in the blood over the previous 2-3 months. This can help diabetics and their healthcare professionals determine whether the steps they're taking to control their diabetes are working or if they need to be tweaked.

A1c is a blood test that is usually used to help newly diagnosed diabetics identify how high their uncontrolled blood glucose levels have been in the previous 2-3 months. The test may be ordered multiple times throughout the control period, and then at least twice a year after that to ensure that good control is maintained.

What does my Hemoglobin A1c test result mean?

HbA1c levels is currently reported as a percentage for monitoring glucose control, and it is suggested that most diabetics try to keep their hemoglobin A1c below 7%. The closer diabetics can keep their A1c to the therapeutic objective of less than 7% without experiencing abnormally low blood glucose, the better their diabetes is controlled. The risk of problems rises as the A1c rises.

However, a person with type 2 diabetes may have an A1c goal set by their healthcare professional. The length of time since diagnosis, the presence of other diseases as well as diabetes complications, the risk of hypoglycemia complications, life expectancy, and whether or not the person has a support system and healthcare resources readily available are all factors that may influence the goal.

For example, a person with heart disease who has had type 2 diabetes for many years without diabetic complications may have a higher A1c target set by their healthcare provider, whereas someone who is otherwise healthy and newly diagnosed may have a lower target set by their healthcare provider as long as low blood sugar is not a significant risk.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.



Erectile dysfunction (ED) is an issue that plagues far too many men in the United States. In fact, more than 30 million men are currently struggling with ED.

Beyond its physical implications, ED puts a significant mental burden on men. It can also lead to marital strife as ED hinders a couple’s sex life.

The good news is that there are erectile dysfunction tests to help identify the issue. With a solid diagnosis, doctors can prescribe the proper ED treatments to solve the issue.

Read on to learn all about ED tests. Explore how an ED lab test can confirm the existence of an issue and lead to its resolution.

What Is Erectile Dysfunction?

Before diving into the various ED tests, it is important to define this medical condition. With ED, a male cannot get or maintain an erection. ED has a significant impact on sexual intercourse as the male now has difficulty satisfying his partner.

Some patients with ED cannot get an erection at all. Others get an erection initially, but it goes away during sexual intercourse, causing issues for their partner. Another group of men get an erection sometimes, but other times are unable to.

Patients with ED often schedule an appointment with their primary care physician. A urologist is another doctor that treats men with ED.

These doctors prescribe an ED lab test to verify the presence of an issue. A separate issue may cause a patient's ED, and the doctors will investigate all possibilities.

What Are the Causes of Erectile Dysfunction?

Many people associate ED with older men. They think that this is a common issue with aging men.

However, the truth is that ED is not a normal part of the aging process. In fact, ED can plague men in any age group.

Taking certain medications or other supplements can lead to ED. Your doctor will certainly assess your current medication to determine if there is a link to ED.

Particular behaviors are also known to cause ED. Obesity and smoking tobacco are two known causes of ED.

There are various medical conditions and diseases that lead to ED. Your doctor will ask about your medical history to look for potential causes. Even psychological or emotional conditions can directly cause ED.

The end result is not good for patients with ED. The effects go well beyond having a positive sex life.

Patients with ED suffer from low self-esteem and depression resulting from their condition. Naturally, ED patients have fertility issues and it often causes emotional duress when a couple cannot get pregnant.

How Is Erectile Dysfunction Diagnosed?

As stated earlier, the doctor is going to ask about your medical history. They are interested in what medicines you take, prior surgeries, and conditions you are dealing with. Additionally, your doctor will ask about your family history to see if there is a potential genetic linkage.

The doctor is certainly going to inquire about your sex life. This is a time to embrace honesty so that the doctor can figure out what is going on.

A physical examination by the doctor follows. Of course, examination of the testicles and penis is part of this process. The doctor also looks for hair loss and breast size. The latter two signs may indicate a hormonal imbalance.

Checking your pulse at the wrists is a common part of the physical examination. The doctor wants to make sure that blood is flowing properly to your extremities.

Listening to your heartbeat for any abnormalities and checking blood pressure are also important steps. Any cardiovascular issues may be the root cause behind ED.

Lab tests of your blood and urine are on deck. These lab tests yield clues to what is causing ED.

For example, your lab results may indicate issues like heart disease or diabetes. These conditions, along with kidney disease, are common root causes of ED. Your doctor also looks for hormonal imbalances that may trigger ED.

Thyroid operation is another possibility that the doctors check for using blood work. The thyroid is critical for the flow of sex hormones. If it is not working properly, it may be difficult to get an erection.

What Are Some Other Erectile Dysfunction Tests?

The doctor may want to run some additional tests. There are several different tests to confirm the presence of ED.

Men get several erections per night when they are sleeping. Your doctor may ask to perform an overnight erection test. This involves wearing a device that measures the strength and frequency of your nightly erections. If you are still getting erections at night, it suggests your ED issues are rooted in mental or emotional issues.

The doctor may call for an intracavernosal test. This is where the doctor injects medicine into the base of the penis to check for an erection. Failure to get an erection means there is a blood flow issue. Lastly, the doctor may want to do an ultrasound, which is another proven method to check for blood flow.

What Are the Benefits of Lab Tests for Erectile Dysfunction?

There are many benefits to going for erectile dysfunction lab tests. For starters, the results are secure and confidential. No one, not even your partner, has access to the results unless you grant it.

At our lab, you do not even need a doctor’s prescription or referral. You can get ED lab results directly if you do not want to involve your primary care physician.

Another benefit to our testing is that you do not need health insurance. The testing is affordable and 100% satisfaction is guaranteed. The results are available to the patient in no more than 48 hours.

How Can ED Tests Get You Back on Track Today?

ED tests are the most effective way to get your personal life back on track. Here, you can confirm the issue and determine what the root cause is. Whether it is a medical condition or mentally induced, knowing the root cause is key to fixing it.

If you are interested in getting erectile dysfunction tests, we offer a selection of Erectile Dysfunction (ED) panels that include lab tests and biomarkers to evaluate if they are out of balance.