Endocrine Tests

Endocrine Lab Testing and health information

Do you have an endocrine disorder?

We provide comprehensive diagnostic testing to diagnose and monitor early endocrine disorders such as diabetes, thyroid diseases, pituitary disorders, and adrenal gland issues.

The endocrine system regulates your hormones, which are the chemical messengers that control all of your body’s functions. When something goes wrong with this system, it can lead to a group of conditions that affect the way your body uses its hormones. They can cause problems like obesity, infertility, diabetes, and various health problems, including thyroid nodules and Graves disease. These endocrine disorders are a group of conditions that affect how your body uses its hormones. They can cause serious health problems if left untreated.

If you want to learn more about endocrine disorders and the lab tests that can help you, click on the title of the articles below.

Endocrine Disorders and Lab Testing - What You Need to Know

Lab tests for Endocrine disorders are available at Ulta Lab Tests. We offer a comprehensive range of diagnostic testing services to help detect and monitor the early stages of the disease, including diabetes, thyroid diseases, pituitary disorders, adrenal gland problems, and more.

If you’re looking for accurate results that are available in 1 to 2 business days after specimen collection, then our lab testing services are perfect for you. We provide fast access to high-quality diagnostic testing to get started on treatment as soon as possible.

Don't delay until it's too late; order the endocrine lab tests that are best for you from the list below.


Name Matches
Determination of ACTH is useful in differentiating between primary and secondary adrenocortical hypo- and hyperfunctional disorders: Addison's disease, Cushing's syndrome, adrenal carcinoma, ectopic ACTH syndrome, and adrenal nodular hyperplasia.

Endocrine Panel

  • C-Reactive Protein (CRP)
  • Comprehensive Metabolic Panel (CMP) [ 10231 ]
  • DHEA Sulfate, Immunoassay [ 402 ]
  • Estradiol [ 4021 ]
  • FSH and LH [ 7137 ]
  • Hemoglobin and Hematocrit [ 7998 ]
  • IGF-I, LC/MS [ 16293 ]
  • Lipid Panel [ 7600 ]
  • Progesterone, Immunoassay [ 745 ]
  • Prolactin [ 746 ]
  • Sed Rate by Modified Westergren (ESR) [ 809 ]
  • T3 Total [ 859 ]
  • T4 (Thyroxine), Total [ 867 ]
  • Testosterone, Free (Dialysis) and Total MS [ 36170 ]
  • TSH [ 899 ]

DHEA-S is the sulfated form of DHEA and is the major androgen produced by the adrenal glands. This test is used in the differential diagnosis of hirsute or virilized female patients and for the diagnosis of isolated premature adrenarche and adrenal tumors. About 10% of hirsute women with Polycystic Ovarian Syndrome (PCOS) have elevated DHEA-S but normal levels of other androgens.


Most Popular
During pregnancy and postpartum lactation, serum prolactin can increase 10- to 20-fold. Exercise, stress, and sleep also cause transient increases in prolactin levels. Consistently elevated serum prolactin levels (>30 ng/mL), in the absence of pregnancy and postpartum lactation, are indicative of hyperprolactinemia. Hypersecretion of prolactin can be caused by pituitary adenomas, hypothalamic disease, breast or chest wall stimulation, renal failure or hypothyroidism. A number of drugs, including many antidepressants, are also common causes of abnormally elevated prolactin levels. Hyperprolactinemia often results in galactorrhea, amenorrhea, and infertility in females, and in impotence and hypogonadism in males. Renal failure, hypothyroidism, and prolactin-secreting pituitary adenomas are also common causes of abnormally elevated prolactin levels.

Includes Albumin, Albumin/Globulin Ratio (calculated), Alkaline Phosphatase, ALT, AST, BUN/Creatinine Ratio (calculated), Calcium, Carbon Dioxide, Chloride, Creatinine with GFR Estimated, Globulin (calculated), Glucose, Potassium, Sodium, Total Bilirubin, Total Protein, Urea Nitrogen


Helpful in assessing testicular function in prepubescent hypogonadal males and in managing hirsutism, virilization in females

This is an uncapped test. Reference ranges above 1100 ng/dL can be reported with a quantitative result.


Helpful in assessing testicular function in males and managing hirsutism, virilization in females.

Testosterone circulates almost entirely bound to transport proteins: normally less than 1% is free. Measurement of Free Testosterone may be useful when disturbances in Sex Hormone Binding Globulin (SHBG) are suspected such as when patients are obese or have excessive estrogen. Testosterone measurements are used to assess erectile dysfunction, infertility, gynecomastia, and osteoporosis and to assess hormone replacement therapy.


This test is useful in the differential diagnosis of male hypogonadism. For males 18 years of age and older only. Pediatric and Female patients will need to order Testosterone, Total, MS #15983.

Due to changes in testosterone levels throughout the day, two morning (8:00-10:00 a.m.) specimens obtained on different days are recommended by The Endocrine Society for screening.

Please note: If Testosterone, Total, Males (Adult) Only #873 is ordered for a pediatric or female patient, the lab will automatically change the test to and charge for Testosterone, Total, MS #15983.

This test can report a value up to 3000 ng/dL. any number >3000 will be stated as >3000.


Helpful in assessing testicular function in male and managing hirsutism, virilization in females.


Calcitonin concentration is increased in patients with medullary thyroid carcinoma. Calcitonin concentrations may be used to monitor disease.

Most Popular
Total T3 measurements are used to diagnose and monitor treatment of hyperthyroidism and are essential for recognizing T3 toxicosis

Most Popular
This test is used to diagnose hyperthyroidism and to clarify thyroid status in the presence of a possible protein binding abnormality.

Most Popular

For diagnosis of hypothyroidism and hyperthyroidism.

Note: Free T4 Index (T7) will only be calculated and reported if test code code 861 (T3 Uptake) is ordered as well.


Most Popular
The free T4 are tests thelps evaluate thyroid function. The free T4 test is used to help diagnose hyperthyroidism and hypothyroidism. Free T4 is the active form of thyroxine and is usually ordered along with or following a TSH test. This helps the doctor to determine whether the thyroid hormone feedback system is functioning as it should, and the results of the tests help to distinguish between different causes of hyperthyroidism and hypothyroidism.

Most Popular

The Thyroid-stimulating Hormone (TSH) Blood Test is for differential diagnosis of primary, secondary, and tertiary hypothyroidism. The TSH test is also useful in screening for hyperthyroidism. This assay allows adjustment of exogenous thyroxine dosage in hypothyroid patients and in patients on suppressive thyroxine therapy for thyroid neoplasia.


Androstenedione is useful when evaluating patients with androgen excess and managing patients with Congenital Adrenal Hyperplasia (CAH).

Cortisol is increased in Cushing's disease and decreased in Addison's disease (adrenal insufficiency).

Cortisol is increased in Cushing's disease and decreased in Addison's disease (adrenal insufficiency).

Cortisol is increased in Cushing's disease and decreased in Addison's disease (adrenal insufficiency). This test requires 5 individual serum blood specimens to be drawn; 30 minutes apart. Patient should plan for 3 hours at the patient service center.


Cortisol is increased in Cushing's disease and decreased in Addison's disease (adrenal insufficiency).


Most Popular

Cortisol is increased in Cushing's Disease and decreased in Addison's Disease (adrenal insufficiency). Patient needs to have the specimen collected between 7 a.m.-9 a.m.


Urinary Free Cortisol is useful in the detection of patients with Cushing's syndrome for whom Free Cortisol concentrations are elevated.

Most Popular

Cortisol is increased in Cushing's Disease and decreased in Addison's Disease (adrenal insufficiency). Patient needs to have the specimen collected between 3 p.m - 5 p.m.


Most Popular
Cortisol is increased in Cushing's Disease and decreased in Addison's Disease (adrenal insufficiency).


Have you been experiencing fluctuations in weight, mood swings, hair loss, or insomnia? If so, it may be a hormone imbalance. 

Your endocrine system is responsible for producing hormones in your body. If your hormones are unbalanced, they can throw your whole body off. 

Metabolism, sexual function, reproduction, sleep, weight, and mood are all regulated by hormones. Keeping your endocrine system running well is essential. 

If you're feeling like there is something disrupting your hormones, it is important that you look into endocrine tests to find out what is actually going on. 

Let's look into this deeper.

What Are Endocrine Disorders?

Your endocrine system is one of the most important parts of your body. In simple terms, an endocrine disorder is when your endocrine systemis malfunctioning, and a gland in the body isn't doing its job correctly. 

Diabetes is one of the most commonly known endocrine disorders. Thyroid diseases such as Hypothyroidism, Hyperthyroidism, Hashimoto's, Graves Disease, and Addison's Disease are more common than you might think. And then there are some diseases like Cushing's Syndrome, Prolactinoma, adrenal dysfunction, and Polycystic Ovary Syndrome that are much less talked about.

Your endocrine system needs to be running efficiently in order for all of your organs to work properly. With too much cortisol, you may find yourself in a constant state of "fight or flight." Too much testosterone can cause excessive hair growth, hair loss, and acne. The imbalance of your thyroid hormones can cause rapid weight gain with the inability to lose weight. 

Risk Factors & Causes

There are many internal and external factors that can increase your risk for endocrine system disorders. 

Externally, lack of nutrition, a poor diet, injury, sedentary lifestyle, and lack of exercise can have significant adverse effects on your endocrine system. 

Internally, infection, elevated cholesterol levels, tumors, and genetic disorders are common causes and risk factors. Personal history of autoimmune disease can also be a large risk factor for endocrine diseases and disorders. 

Women are far more likely to have an endocrine disorder than men, and menstruation and pregnancy are likely part of the reason. Pregnancy is known for throwing your hormones out of sync. 

Signs & Symptoms

Medical professionals often misread symptoms of endocrine disorders. Anxiety and depression are two of the main symptoms. If your doctor is only treating the symptom, the disorder itself could only get worse. 

Other signs and symptoms of endocrine disorders can also be commonly misdiagnosed. Unexplained weight changes, fatigue, insomnia, hair loss, constipation, excessive thirst, and heat or cold intolerance are all symptoms. 

If your doctor isn't taking your symptoms and concerns seriously, it is important to be your own advocate. Ulta Lab Tests makes this easy with the ability to order your own tests. 

Rare endocrine disorders can produce symptoms such as confusion, memory loss, low heart rate or blood pressure, and eye and vision problems. If you are experiencing any of these and it seems life-threatening, you should seek medical attention immediately. 

Endocrine Tests

When diagnosing, Endocrine Disorders tests are always needed. Endocrine Disorders tests will all look into the hormones in your body and making sure they are in the normal range.  

The Endocrine Advanced Panel includes the tests ordered most often to identify endocrine disorders. This Endocrine lab test panel contains 20 tests with 83 biomarkers used to identify a malfunctioning endocrine gland.

  • C-Reactive Protein (CRP)
  • CBC (includes Differential and Platelets)
  • Comprehensive Metabolic Panel (CMP)
  • Cortisol, A.M.
  • DHEA Sulfate, Immunoassay
  • Estradiol
  • FSH and LH
  • Hemoglobin A1c (HgbA1C)
  • IGF-I, LC/MS
  • Lipid Panel
  • Progesterone, Immunoassay
  • Prolactin
  • T3 Total
  • T3, Free
  • T4 (Thyroxine), Total
  • T4, Free
  • Testosterone, Free (Dialysis) and Total MS
  • TSH
  • Vitamin D, 25-Hydroxy, Total, Immunoassay
  • Vitamin B12 (Cobalamin) and Folate Panel, Serum

Once your doctor reviews your labs and can see which hormones are out of balance and which biomarkers are out of functional reference ranges, she can work towards a specific direction she thinks your diagnoses could go in and order more specific tests.

It is possible that your doctor will want to do ultrasounds on the gland they think is malfunctioning. Computerized tomography (CT) scans and Magnetic resonance imaging (MRI) will provide highly detailed scans for your doctor to help diagnose and treat your endocrine disorder. 

There are many tests for endocrine disorders, but the first step is to get initial blood tests done.  

FAQ About Endocrine Disorders & Tests

You may have a lot of questions concerning endocrine disorders and endocrine disorders tests. Here are some common questions. If you have any further questions, make an appointment to see a doctor. 

When Should I See My Doctor?

Any time you think your body isn't functioning correctly, you should see your doctor; however, if your doctor isn't as attentive or proactive as you would like, order tests from Ulta Lab Tests and be your own advocate. 

Is My Weight Gain Because of an Endocrine Disorder?

It is definitely possible that your weight is fluctuating because of an Endocrine Disorder. Make sure to mention this symptom to your doctor. 

What Tests Should I Order?

Start with Ulta Lab Tests Endocrine Advanced Panel This will cover most of the bases for any severe endocrine disorders. These 20 tests will give you 83 biomarkers, and the most common types of endocrine disorders will be able to be identified with these tests

Is My Endocrine Disorder Curable?

Technically, no, but they can be managed. Most Endocrine Disorders are something you will have to monitor for the rest of your life. If your hormones are unbalanced because of a cyst, tumor, or trauma, then it is possible that the disorder can be corrected. 

Lab Testing With Ulta Lab Tests

Ulta Lab Tests offers tests that are highly accurate and reliable, so you can make informed decisions about your health.

  • Secure and confidential results
  • No insurance referral is needed
  • Affordable pricing
  • 100% satisfaction guarantee

Order your endocrine lab tests today and your results will be provided to you securely and confidentially online in 24 to 48 hours for most tests.

Take control of your health today with Ulta Lab Tests.

 The endocrine system is a network that is made up of different glands throughout the human body. The endocrine system and the nervous system work together to regulate and control many of the internal functions of the body. The nervous system makes use of nerve impulses as its means for control; the endocrine system utilizes hormones, which are chemical messenger molecules. These hormones are created, stored, as well as secreted by an integrated network of different glands. When endocrine glands release different hormones into the blood, they will target specific organs, tissues, or cells. Every target will have dedicated receptors for that specific hormone, which can be explained as a key that fits into a lock.  

This network is made up of several parts. One of these is the hypothalamus, which is the endocrine gland situated in the brain. Another includes the pituitary gland, located in its own dedicated place inside of the sella turcica, just under the hypothalamus. The signals sent by the brain instruct the hypothalamus to create many types of hormones that either inhibit or stimulate the pituitary. These are the signals that make the pituitary either decrease or increase the hormones that it produces, followed by releasing them into the blood. Hormones that the pituitary releases in different amounts will travel through the blood to the endocrine glands. Some of these glands include the ovaries and testicles, adrenal, and thyroid glands. Many other tissues and organs in the body are also classified as hormone targets.  

Many of the endocrine glands are governed by specific feedback systems to prevent hormone imbalance. An example of this includes the hypothalamus that first stimulates the pituitary gland, followed by the adrenal gland to regulate the way it functions. The hypothalamus will first release CRH (corticotropin-releasing hormone), which stimulates the pituitary gland into releasing corticotropin (commonly known as an adrenocorticotrophic hormone or ACTH). ACTH then stimulates the adrenal gland into producing cortisol. When cortisol levels reach a specific threshold, the pituitary and the hypothalamus glands start to lower ACTH and CRH production, which creates a feedback loop that is negative.  

Certain hormones, like cortisol, have a monthly or a daily pattern or sequence of release. Levels of cortisol are usually higher in the mornings and lower in the evenings. The pituitary hormone levels of FSH (follicle-stimulating hormone) and LH (luteinizing hormone) decrease and increase in a regular pattern, which regulates the monthly menstrual cycles in women. Other types of hormones in the blood are typically present in far smaller quantities, will release in specific types of situations. An example of this is when adrenaline (epinephrine) is released from the adrenal glands as a direct response to a stressful situation.  

This gland network and the endocrine system are, in most cases, interdependent, which means any type of disorder which affects one of these glands can cause diseases that are linked to the other glands present in this system. For example, disorders that affect the hypothalamus might also impact on the pituitary gland along with the “downstream” targeted organs. The endocrine syndromes are often categorized by the affected gland.  

Primary disorders will affect one of the target organs, such as the adrenal or thyroid glands.  

Secondary disorders directly affect glands that perform the function of regulating the target organs. This is most commonly the pituitary gland.  

Tertiary disorders are linked to the hypothalamus.  

The Common Causes of Endocrine Syndromes 

Hormones influence multiple systems in the body, which includes the development of female and male characteristics, growth, fertility, digestion, stress response, glucose utilization, energy consumption, water/fluid balance, maintaining the correct blood pressure, and bone metabolism. When the glands are producing too little or too much of a hormone, it can affect these natural processes. This is a condition that is more commonly known as hormonal imbalances. These conditions also go by certain names, like Cushing syndrome (linked with excess cortisol), as they are associated with typical sets of complications and symptoms.  

Endocrine gland dysfunction might occur when the actual gland has a problem, an issue with the feedback-system, or/and when the target tissues are failing to respond to the hormone. When hormone production decreases, it can relate to infections when the immune system is damaged, trauma, crowding of hormone-producing cells caused by the presence of a tumor. Other causes also arise from a gene mutation (inherited) that affects the quality, quantity, or the overall structure of the hormone. When these glands are failing to release or produce enough hormone amounts to stimulate a targeted gland into releasing and producing its hormone, it might also lower production.  

An increase in the production of a hormone can be associated with an imbalance with the feedback system. An example of this is when the pituitary produces an excess amount of ACTH, which will disrupt and interfere with the feedback-system. An increase in production can also be linked to enlarged glands (hyperplasia) or tumors of the cells that produce these hormones. It can also occur when the tissue response is lacking, the use of certain types of medications, or inherited conditions.  

The endocrine tumors which are responsible for producing too many hormones are typically benign and small. Many of these are situated inside the gland that is affected, and that gland only produces one specific hormone type. These tumors rarely become cancerous. It is also very rare that an endocrine-disrupting tumor will be situated anywhere else inside the body. The tumor itself may be responsible for causing symptoms due to the hormone levels that it produces, as its growth will eventually crowd out and lower the production of any other hormone in the affected gland. This is also caused by the size of the tumor that puts pressure on the surrounding structures and nerves.  

Many of the endocrine conditions that are inherited are typically rare and are typically linked to dysfunctional or deficient production associated with one hormone. Or with the hormone production of glands, such as congenital hypothyroidism. There are, however, a few genetic syndromes or conditions that will affect several glands. The two that are identified to affect many of the endocrine glands include MEN-1 and MEN-2. This stands for Multiple Endocrine Neoplasia, Type 1 and Type 2.  

These are the conditions that relate to an alteration in genes. They also increase the likelihood that the affected person will develop a tumor or tumors in one or many of the endocrine glands in their body.  

Endocrine Disorders and Syndromes 

The common tests used to detect endocrine syndromes and disorders include: 

hCG Tumor Marker 

Catecholamines 

Antidiuretic Hormone (ADH) 

Plasma Free Metanephrines 

Urine Metanephrines