Heart Disease

Heart Disease Lab Tests and health information

Do you want to know how likely you are to have heart disease? 

Our blood tests for heart disease provide a comprehensive set of tests to detect hidden heart diseases before they become life-threatening.

In the United States, heart disease is the leading cause of death. Heart issues are considered to be the cause of one out of every four deaths. Heart disease isn't simply a problem for the elderly; it may afflict people of all ages, including children. You can be placing yourself in danger without even realizing it. That's why we recommend being tested to discover if you have any signs or symptoms that point to possible heart disease. It's important to be tested regularly to stay on top of your health and ensure that everything is in optimal order. 

Our lab tests can help you figure out whether you have any cardiac problems, such as high blood pressure, inflammation, high cholesterol, or underlying conditions, which can lead to a heart attack or stroke. These tests will assist you in gaining control of your health and lowering your risk of developing cardiovascular issues in the future. Our lab tests can help you determine if you're at risk for heart conditions like coronary artery disease or congestive heart failure. We provide a variety of cardiac screening tests to ensure your health and well-being in the future.

Our selection of Advanced Heart Health lab panels offers a comprehensive set of tests and biomarkers to aid in the detection of hidden heart issues before they become life-threatening.

Don’t wait until it’s too late – get started today and order from our advanced heart health lab panels listed below.

Click here for more information about heart disease and lab tests. 


Name Matches
Most Popular













Description: An Alkaline Phosphatase test or ALP is a blood test that is used to screen for and monitor liver disease, bone disorders, and gallbladder disease.

Also Known As: ALP Test, Alk Phos Test, Alkp Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is an Alkaline Phosphatase test ordered?

An ALP test may be requested as a standard laboratory test, frequently in conjunction with a liver panel of further assays. When a person exhibits signs of a liver or bone issue, it is frequently requested in conjunction with a number of additional tests.

What does an Alkaline Phosphatase test check for?

An enzyme called alkaline phosphatase is present in many bodily tissues. The cells that make up bone and the liver have the highest quantities of ALP. Liver illness or bone diseases are the most frequent causes of high blood levels of ALP. The blood's concentration of ALP is determined by this test.

ALP is located in the liver on the margins of cells that converge to form bile ducts, which are minuscule tubes that transport bile from the liver to the bowels, where it is required to aid in the digestion of dietary fat. Osteoblasts, specialized cells involved in bone production, are responsible for producing ALP in bone. Isoenzymes, which are produced in unique forms by each type of tissue, are ALP.

For instance, when one or more bile ducts are obstructed, ALP blood levels may significantly rise. Gallbladder inflammation or gallstones may be the cause of this. Blood ALP levels rise slightly more subtly in cirrhosis, liver cancer, hepatitis, and when liver-toxic medications are used.

Increased ALP levels can result from any condition that promotes excessive bone growth, including bone diseases like Paget's disease. Because their bones are still growing, children and adolescents often have higher blood ALP levels. Because of this, the ALP test needs to be interpreted differently for children and adults.

It is feasible to distinguish between the various ALP forms generated by various bodily tissues. A test may be run to identify which isoenzyme is elevated in the blood if it is unclear from clinical signs and symptoms whether the cause of a high ALP test result is liver or bone illness.

Lab tests often ordered with an Alkaline Phosphatase test:

  • AST
  • ALT
  • GGT
  • Bilirubin
  • Comprehensive Metabolic Panel
  • Hepatic Function Panel
  • Alkaline Phosphatase Isoenzymes

Conditions where an Alkaline Phosphatase test is recommended:

  • Lier Disease
  • Hepatitis
  • Cirrhosis
  • Jaundice
  • Osteoporosis
  • Paget’s Disease
  • Vitamin D Deficiency

How does my health care provider use an Alkaline Phosphatase test?

Using the alkaline phosphatase test, liver disease and bone diseases can be found.

Damaged liver cells produce more ALP into the blood under situations that harm the liver. Because ALP levels are particularly high at the margins of the cells that unite to form bile ducts, this test is frequently used to identify obstructed bile ducts. Blood levels of ALP are frequently high when one or more of them are blocked, such as by a tumor.

ALP levels in the blood can be impacted by any illness or disease that hinders bone development or increases bone cell activity. For instance, an ALP test may be used to identify tumors that have metastasized to the bones or to identify Paget's disease, a condition that results in deformed bones. This examination could occasionally be used to track the progress of patients being treated for Paget's disease or other bone disorders such vitamin D insufficiency.

Tests for the ALP isoenzyme may be performed to identify the cause if ALP readings are elevated but it is unclear whether this is related to liver or bone illness. To distinguish between liver and bone illness, one may additionally perform a GGT test and/or a test for 5'-nucleotidase. The levels of GGT and 5'-nucleotidase are elevated in liver illness but not in disorders of the bones.

What do my Alkaline Phosphatase test results mean?

High ALP typically indicates the presence of a disease that increases bone cell activity or liver damage.

The liver is typically where the elevated ALP is coming from if other liver tests, such as bilirubin, aspartate aminotransferase, or alanine aminotransferase, are also high. The high ALP is probably the result of liver illness if GGT or 5-nucleotidase levels are also elevated. If one of these two tests comes out normal, a bone issue is probably to blame for the high ALP. The ALP is typically coming from bone if calcium and/or phosphorus readings are abnormal.

A test for ALP isoenzymes may be required to differentiate between bone and liver ALP if it is unclear from signs and symptoms or other regular testing whether the high ALP is from the liver or bone.

ALP test findings are typically analyzed alongside those of other liver disease testing. ALP is commonly significantly less increased than AST and ALT in several types of liver illness, such as hepatitis. ALP and bilirubin may increase substantially higher than AST or ALT when the bile ducts are obstructed. ALP levels in liver cancer may also be higher.

ALP may be elevated in some bone illnesses, such as Paget's disease, which causes enlarged and misshapen bones, or in some cancers that extend to the bone.

ALP levels will eventually drop or return to normal if Paget's disease is successfully treated in a patient. ALP levels should fall if someone with liver or bone cancer responds to therapy.

Other illnesses include Hodgkin's lymphoma, congestive heart failure, ulcerative colitis, and specific bacterial infections can cause moderately high ALP.

ALP levels may briefly drop after cardiac bypass surgery or blood transfusions. Levels may drop as a result of a zinc deficiency. Hypophosphatasia, a rare genetic bone metabolism condition, can result in extremely low levels of ALP that persist for a long time. Wilson disease, protein insufficiency, and malnutrition are further potential reasons of low ALP.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: An ALT test is a blood test that is used to screen for and diagnose liver disease.

Also Known As: Alanine Aminotransferase Test, Alanine Transaminase Test, GPT Test, SGPT Test, Serum Glutamic Pyruvic Transaminase Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is an Alanine Transaminase test ordered?

When a person undergoes a standard health examination, ALT may be ordered as part of a full metabolic panel.

When a person has signs and symptoms of a liver problem, a healthcare provider will usually prescribe an ALT test.

Because many people with minor liver damage have no signs or symptoms, ALT may be ordered alone or in combination with other tests for persons who are at an elevated risk for liver disease. With modest liver injury, ALT levels will rise even if there are no other symptoms.

ALT may be ordered on a frequent basis during the course of treatment to establish whether the medication is effective when it is used to monitor the treatment of persons with liver disease.

What does an Alanine Transaminase blood test check for?

Alanine aminotransferase is an enzyme found mostly in liver and kidney cells. It's also found in much lesser concentrations in the heart and muscles. This test determines the amount of ALT in your blood.

The enzyme ALT converts alanine, a protein amino acid, into pyruvate, an important intermediary in cellular energy production. ALT levels in the blood are low in healthy people. ALT is released into the bloodstream when the liver is injured, frequently before more evident indications of liver injury, such as jaundice, appear. As a result, ALT is a useful test for detecting liver disease early on.

The liver is a critical organ positioned directly behind the rib cage on the upper right side of the abdomen. It is engaged in a variety of vital bodily functions. The liver aids in the digestion of nutrients, creates bile to aid in fat digestion, produces a variety of essential proteins such as blood clotting factors and albumin, and breaks down potentially hazardous compounds into safe substances that the body may utilize or discard.

Damage to liver cells can be caused by a variety of factors, resulting in an elevation in ALT. The test is most useful for detecting damage caused by hepatitis or medications or other toxins that are harmful to the liver.

As part of a liver panel, ALT is frequently tested alongside aspartate aminotransferase, another liver enzyme. When the liver is injured, both ALT and AST levels rise, albeit ALT is more specific for the liver and may be the only one to rise in some circumstances. An AST/ALT ratio can be used to help distinguish between different types of liver injury and their severity, as well as to distinguish liver injury from heart or muscle damage.

Lab tests often ordered with an Alanine Transaminase test:

  • AST
  • ALP
  • GGT
  • Bilirubin
  • Liver Panel
  • Comprehensive Metabolic Panel
  • Albumin
  • Total Protein
  • Prothrombin Time
  • Hepatitis Panel General

Conditions where a an Alanine Transaminase test is recommended:

  • Liver Disease
  • Hepatitis
  • Jaundice
  • Cirrhosis
  • Alcoholism
  • Wilson Disease
  • Hemochromatosis

How does my health care provider use an Alanine Transaminase test?

The alanine aminotransferase test is commonly used to diagnose liver damage. It's frequently ordered as part of a liver panel or complete metabolic panel with aspartate aminotransferase to screen for and/or diagnose liver disease.

ALT is an enzyme found mostly in liver and kidney cells. ALT is released into the bloodstream when the liver is injured. As a result, ALT is a useful test for detecting liver disease early on.

Although ALT is more specific to the liver than AST, they are both considered to be two of the most significant tests for detecting liver impairment. When AST is directly compared to ALT, an AST/ALT ratio is calculated. This ratio can assist distinguish between different types of liver disease and identify cardiac or muscle harm.

To assess which type of liver illness is present, ALT values are frequently matched to the results of other tests such as alkaline phosphatase, total protein, and bilirubin.

ALT is frequently requested to monitor the therapy of people with liver disease to evaluate if it is effective, and it can be ordered alone or in combination with other tests.

What do my ALT test results mean?

A low ALT level in the blood is normal and anticipated. The most prevalent cause of ALT levels that are higher than normal is liver disease.

Acute hepatitis and viral infections are the most common causes of very elevated ALT values. ALT levels are normally elevated for 1-2 months after acute hepatitis, but they might take up to 3-6 months to return to normal. ALT levels may also be significantly raised as a result of exposure to liver-toxic medications or other chemicals, or in situations that produce reduced blood flow (ischemia) to the liver.

In chronic hepatitis, ALT levels are frequently less than four times normal. Because ALT levels in this scenario regularly fluctuate between normal and slightly elevated, the test may be ordered frequently to observe if a trend emerges. Other reasons of mild ALT elevations include bile duct obstruction, cirrhosis, heart damage, alcohol addiction, and liver cancers.

ALT is frequently used in conjunction with an AST test or as part of a liver panel. See the Liver Panel article for more information on ALT values in relation to other liver tests.

The ALT level is usually greater than the AST level in most forms of liver disorders, and the AST/ALT ratio is low. There are a few exceptions: in alcoholic hepatitis, cirrhosis, and heart or muscle injury, the AST/ALT ratio is frequently more than 1, and it may be greater than 1 for a day or two after the onset of acute hepatitis.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: Apo A1 is a blood test that measures that amount of Apolipoprotein A1 in the blood’s. This test is used to assess cardiovascular risk. Low levels of APO A1 are associated with Coronary Artery Disease (CAD) and are said to predict CAD better then triglycerides and HDL does.

Also Known As: Apo A1 Test, Apo A-1 Test, Apolipoprotein A-1 Test, A-1 Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: Fasting for at least 12 hours is required

When is an Apolipoprotein A1 test ordered?

Apolipoprotein A-I and B, as well as other lipid tests, may be ordered as part of a screening to identify a person's risk of cardiovascular disease.

Apo A-I is a protein that plays a key function in lipid metabolism and is the most abundant protein in HDL, or "good cholesterol." Excess cholesterol in cells is removed by HDL, which transports it to the liver for recycling or elimination. Apo A-I levels tend to rise and fall with HDL levels, and apo A-I deficits are linked to an increased risk of CVD.

What does an Apolipoprotein A1 test check for?

Lipids are transported throughout the bloodstream by apolipoproteins, which mix with them. Lipoproteins are held together by apolipoproteins, which protect the water-repellent (hydrophobic) lipids at their core.

Lipoproteins are cholesterol or triglyceride-rich proteins that transport lipids throughout the body for cell absorption. HDL, on the other hand, is like an empty cab. It travels to the tissues to collect excess cholesterol before returning it to the liver. Cholesterol is either recycled for future use or eliminated in bile in the liver. The only mechanism for cells to get rid of excess cholesterol is by HDL reverse transport. It protects the arteries and, if enough HDL is present, it can even reverse the formation of fatty plaques, which are deposits caused by atherosclerosis and can contribute to cardiovascular disease.

The taxi driver is Apolipoprotein A. It permits HDL to be detected and bound by receptors in the liver at the end of the transport by activating the enzymes that load cholesterol from the tissues into HDL. Apolipoprotein A is divided into two types: apo A-I and apo A-II. Apo A-I has a higher prevalence than apo A-II. Apo A-I concentrations can be evaluated directly, and they tend to rise and fall in tandem with HDL levels. Deficiencies in apo A-I are linked to an increased risk of cardiovascular disease.

Lab tests often ordered with an Apolipoprotein A1 test:

  • Apolipoprotein B
  • Cholesterol Total
  • HDL Cholesterol
  • LDL Cholesterol
  • Triglycerides
  • Lipid Panel
  • Lipoprotein (a)
  • Homocysteine
  • hs-CRP
  • Lipoprotein Fractionation, Ion Mobility

Conditions where an Apolipoprotein A1 test is recommended:

  • Cardiovascular Disease
  • Heart Attack
  • Stroke
  • Congestive Heart Failure
  • Angina
  • Coronary Heart Disease

How does my health care provider use an Apolipoprotein A1 test?

An apo B/apo A-I ratio can be determined by ordering both an apo A-I and an apo B test. To assess the risk of developing CVD, this ratio is sometimes used instead of the total cholesterol/HDL ratio.

An apo A-I test may be ordered in the following situations:

Assist in the diagnosis of apo A-I deficiency caused by genetic or acquired diseases.

Assist those with a personal or family history of heart disease, high cholesterol, or triglycerides in their blood.

Keep track of how well lifestyle changes and lipid therapies are working.

An apo A-I test can be ordered in conjunction with an apo B test to determine the apo B/apo A-I ratio. This ratio is occasionally used instead of the total cholesterol/HDL ratio (which is sometimes included in a lipid profile) to assess the risk of developing CVD.

What do my Apolipoprotein A1 test results mean?

Low apo A-I levels are linked to low HDL levels and slowed elimination of excess cholesterol from the body. Low levels of apo A-I, as well as high levels of apo B, are linked to a higher risk of cardiovascular disease.

Deficiencies in apo A-I are caused by a number of hereditary diseases. Abnormal lipid levels, notably excessive amounts of low-density lipoprotein, are common in people with certain illnesses. They frequently have a higher rate of atherosclerosis. Low apo A-I levels are caused by several genetic diseases.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: Apo A1 and B is a blood test that measures that amount of Apolipoprotein A1 and Apolipoprotein B in the blood’s serum along with the ratio between B/A1. This test is used to assess cardiovascular risk. Low levels of APO A1 are associated with Coronary Artery Disease (CAD) and are said to predict CAD better then triglycerides and HDL does.

Also Known As: Apo A1 and B Test, Apo A1 Test, Apo B Test, APOAB Test, Apolipoprotein B-100 Test, Apolipoprotein Evaluation Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: Fasting for 12 hours is required.

When are Apolipoprotein A1 and B tests ordered?

Apolipoprotein A-I and B, as well as other lipid tests, may be ordered as part of a screening to identify a person's risk of cardiovascular disease.

Apo A-I is a protein that plays a key function in lipid metabolism and is the most abundant protein in HDL, or "good cholesterol." Excess cholesterol in cells is removed by HDL, which transports it to the liver for recycling or elimination. Apo A-I levels tend to rise and fall with HDL levels, and apo A-I deficits are linked to an increased risk of CVD.

Apo B is a protein that plays a role in lipid metabolism and is the major protein component of lipoproteins including VLDL and LDL, popularly known as "bad cholesterol." Apo B concentrations are similar to LDL-C concentrations.

What does Apolipoprotein A1 and B blood tests check for?

Lipids are transported throughout the bloodstream by apolipoproteins, which mix with them. Lipoproteins are held together by apolipoproteins, which protect the water-repellent lipids at their core.

Lipoproteins are cholesterol or triglyceride-rich proteins that transport lipids throughout the body for cell absorption. HDL, on the other hand, is like an empty cab or taxi. It travels to the tissues to collect excess cholesterol before returning it to the liver. Cholesterol is either recycled for future use or eliminated in bile in the liver. The only mechanism for cells to get rid of excess cholesterol is by HDL reverse transport. It protects the arteries and, if enough HDL is present, it can even reverse the formation of fatty plaques, which are deposits caused by atherosclerosis and can contribute to cardiovascular disease.

Sticking with the taxi analogy, the driver is Apolipoprotein A. It permits HDL to be detected and bound by receptors in the liver at the end of the transport by activating the enzymes that load cholesterol from the tissues into HDL. Apolipoprotein A is divided into two types: apo A-I and apo A-II. Apo A-I has a higher prevalence than apo A-II. Apo A-I concentrations can be evaluated directly, and they tend to rise and fall in tandem with HDL levels. Deficiencies in apo A-I are linked to an increased risk of cardiovascular disease.

Chylomicrons are lipoprotein particles that transport dietary fats from the digestive system to tissue, primarily the liver, via the bloodstream. These dietary lipids are repackaged in the liver and combined with apo B-100 to create triglyceride-rich VLDL. This combo is similar to a taxi with a full load of passengers and apo B-100 as the driver. The taxi moves from place to place in the bloodstream, releasing one passenger at a time.

Triglycerides are removed from VLDL by an enzyme called lipoprotein lipase, which produces intermediate density lipoproteins first, then LDL. VLDL contains one molecule of apo B-100, which is kept as VLDL loses triglycerides and shrinks to become the cholesterol-rich LDL. Apo B-100 is detected by receptors on the surface of many different types of cells in the body. The absorption of cholesterol into cells is aided by these receptors.

LDL and apo B-100 transport cholesterol that is essential for cell membrane integrity, sex hormone generation, and steroid production. Excess LDL, on the other hand, can cause fatty deposits in artery walls, as well as blood vessel hardening and scarring. Atherosclerosis is a condition in which fatty deposits restrict blood arteries. The risk of a heart attack increases as the atherosclerotic process progresses.

LDL-C levels, which are typically ordered as part of a lipid profile, tend to mimic Apo B-100 levels. Many experts believe that apo B levels will eventually show to be a more accurate predictor of CVD risk than LDL-C. Others disagree, believing that vitamin B is only a modestly superior choice and that it should not be used on a regular basis. The clinical utility of apo B, as well as other developing cardiac risk markers including apo A-I, Lp(a), and hs-CRP, is still unknown.

Lab tests often ordered with Apolipoprotein A1 and B tests:

  • Cholesterol Total
  • HDL Cholesterol
  • LDL Cholesterol
  • Triglycerides
  • Lipid Panel
  • Lipoprotein (a)
  • Homocysteine
  • hs-CRP
  • Lipoprotein Fractionation, Ion Mobility

Conditions where Apolipoprotein A1 and B tests are recommended:

  • Cardiovascular Disease
  • Heart Attack
  • Stroke
  • Congestive Heart Failure
  • Angina

How does my health care provider use Apolipoprotein A1 and B tests?

An apo B/apo A-I ratio can be determined by ordering both an apo A-I and an apo B test. To assess the risk of developing CVD, this ratio is sometimes used instead of the total cholesterol/HDL ratio.

An apo A-I test may be ordered in the following situations:

Assist in the diagnosis of apo A-I deficiency caused by genetic or acquired diseases.

Assist those with a personal or family history of heart disease, high cholesterol, or triglycerides in their blood.

Keep track of how well lifestyle changes and lipid therapies are working.

An apo A-I test can be ordered in conjunction with an apo B test to determine the apo B/apo A-I ratio. This ratio is occasionally used instead of the total cholesterol/HDL ratio to assess the risk of developing CVD.

As an alternative to non-HDL-C, Apo B levels may be ordered to assess the success of lipid treatment.

An apo B test may be conducted in rare circumstances to assist determine a genetic issue that causes apo B overproduction or underproduction.

What do my Apolipoprotein A1 and B test results mean?

Low apo A-I levels are linked to low HDL levels and slowed elimination of excess cholesterol from the body. Low levels of apo A-I, as well as high levels of apo B, are linked to a higher risk of cardiovascular disease.

Deficiencies in apo A-I are caused by a number of hereditary diseases. Abnormal lipid levels, notably excessive amounts of low-density lipoprotein, are common in people with certain illnesses. They frequently have a higher rate of atherosclerosis. Low apo A-I levels are caused by several genetic diseases.

Raised apo B levels are linked to elevated LDL-C and non-HDL-C levels, and are linked to an increased risk of cardiovascular disease. Elevations may be caused by a high-fat diet and/or a reduction in LDL clearance from the blood.

A direct cause of abnormal apo B levels is some hereditary diseases. Familial combined hyperlipidemia, for example, is an inherited condition that causes excessive cholesterol and triglyceride levels in the blood. Apolipoprotein B deficiency, also known as Bassen-Kornzweig syndrome, is a relatively rare hereditary disorder that results in unusually low amounts of apo B.

A variety of underlying diseases and other factors might result in abnormal apo B levels.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: Apolipoprotein B is a blood test that measures that amount of Apolipoprotein B in the blood’s serum. This test is used to assess cardiovascular risk.

Also Known As: Apo B Test, Apolipoprotein B-100 Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is an Apolipoprotein B test ordered?

Apolipoprotein A-I and B, as well as other lipid tests, may be ordered as part of a screening to identify a person's risk of cardiovascular disease.

Apo B is a protein that plays a role in lipid metabolism and is the major protein component of lipoproteins including VLDL and LDL, popularly known as "bad cholesterol." Apo B concentrations are similar to LDL-C concentrations.

What does an Apolipoprotein B blood test check for?

Lipids are transported throughout the bloodstream by apolipoproteins, which mix with them. Lipoproteins are held together by apolipoproteins, which protect the water-repellent lipids at their core.

Lipoproteins are cholesterol or triglyceride-rich proteins that transport lipids throughout the body for cell absorption. HDL, on the other hand, is like an empty cab. It travels to the tissues to collect excess cholesterol before returning it to the liver. Cholesterol is either recycled for future use or eliminated in bile in the liver. The only mechanism for cells to get rid of excess cholesterol is by HDL reverse transport. It protects the arteries and, if enough HDL is present, it can even reverse the formation of fatty plaques, which are deposits caused by atherosclerosis and can contribute to cardiovascular disease.

Chylomicrons are lipoprotein particles that transport dietary fats from the digestive system to tissue, primarily the liver, via the bloodstream. These dietary lipids are repackaged in the liver and combined with apo B-100 to create triglyceride-rich VLDL. This combo is similar to a taxi with a full load of passengers and apo B-100 as the driver. The taxi moves from place to place in the bloodstream, releasing one passenger at a time.

Triglycerides are removed from VLDL by an enzyme called lipoprotein lipase, which produces intermediate density lipoproteins first, then LDL. VLDL contains one molecule of apo B-100, which is kept as VLDL loses triglycerides and shrinks to become the cholesterol-rich LDL. Apo B-100 is detected by receptors on the surface of many different types of cells in the body. The absorption of cholesterol into cells is aided by these receptors.

LDL and apo B-100 transport cholesterol that is essential for cell membrane integrity, sex hormone generation, and steroid production. Excess LDL, on the other hand, can cause fatty deposits in artery walls, as well as blood vessel hardening and scarring. Atherosclerosis is a condition in which fatty deposits restrict blood arteries. The risk of a heart attack increases as the atherosclerotic process progresses.

LDL-C levels, which are typically ordered as part of a lipid profile, tend to mimic Apo B-100 levels. Many experts believe that apo B levels will eventually show to be a more accurate predictor of CVD risk than LDL-C. Others disagree, believing that vitamin B is only a modestly superior choice and that it should not be used on a regular basis. The clinical utility of apo B, as well as other developing cardiac risk markers including apo A-I, Lp(a), and hs-CRP, is still unknown.

Lab tests often ordered with an Apolipoprotein B test:

  • Apolipoprotein A1
  • Cholesterol Total
  • HDL Cholesterol
  • LDL Cholesterol
  • Triglycerides
  • Lipid Panel
  • Lipoprotein (a)
  • Homocysteine
  • hs-CRP
  • Lipoprotein Fractionation, Ion Mobility

Conditions where an Apolipoprotein B test is recommended:

  • Cardiovascular Disease
  • Heart Attack
  • Stroke
  • Congestive Heart Failure
  • Angina

How does my health care provider use an Apolipoprotein B test?

An apo B/apo A-I ratio can be determined by ordering both an apo A-I and an apo B test. To assess the risk of developing CVD, this ratio is sometimes used instead of the total cholesterol/HDL ratio.

As an alternative to non-HDL-C, Apo B levels may be ordered to assess the success of lipid treatment.

An apo B test may be conducted in rare circumstances to assist determine a genetic issue that causes apo B overproduction or underproduction.

What do my Apolipoprotein B test results mean?

Raised apo B levels are linked to elevated LDL-C and non-HDL-C levels, and are linked to an increased risk of cardiovascular disease. Elevations may be caused by a high-fat diet and/or a reduction in LDL clearance from the blood.

A direct cause of abnormal apo B levels is some hereditary diseases. Familial combined hyperlipidemia, for example, is an inherited condition that causes excessive cholesterol and triglyceride levels in the blood. Apolipoprotein B deficiency, also known as Bassen-Kornzweig syndrome, is a relatively rare hereditary disorder that results in unusually low amounts of apo B.

A variety of underlying diseases and other factors might result in abnormal apo B levels.

Is apoB a heart disease risk factor? 
The markers of particle number, apoB, or LDL particle number were better at predicting the risk of heart disease than LDL-C.

There are two major forms of Apolipoprotein B, B-100 and B-48. B-100, synthesized in the liver, is the major protein in VLDL, IDL, and LDL cholesterol. B-48, synthesized in the intestines, is essential for the assembly and secretion of chylomicrons. Patients with increased concentrations of Apolipoprotein B are at increased risk of atherosclerosis.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: The BNP test measures levels of B-Type Natriuretic peptide in your blood plasma to detect heart failure.

Also Known As: Brain Natriuretic Peptide Test

Collection Method: Blood Draw

Specimen Type: Plasma

Test Preparation: No preparation required

When is a B-Type Natriuretic Peptide test ordered?

When a person exhibits signs and symptoms that could indicate heart failure, a doctor may request a BNP test.

When someone is in a crisis or has symptoms that could be due to heart failure, testing may be done in the emergency room to identify if they have heart failure or another medical problem.

When a person is being treated for heart failure, several BNP tests may be performed throughout time to track the effects of the treatment.

What does a B-Type Natriuretic Peptide blood test check for?

N-terminal propeptide and B-type natriuretic peptide are chemicals created and released when the heart is strained and working hard to pump blood. BNP and NT-proBNP tests are used to detect and evaluate heart failure by measuring their levels in the blood.

Because it was first discovered in brain tissue, BNP was given the name brain natriuretic peptide. The left ventricle of the heart is the primary producer of BNP. It has to do with blood volume and pressure, as well as the amount of work the heart has to do in pumping blood around the body. The heart produces small amounts of a precursor protein called pro-BNP on a regular basis. The enzyme corin then cleaves pro-BNP, releasing the active hormone BNP and an inactive fragment, NT-proBNP, into the bloodstream.

When the heart’s left ventricle is stretched, the levels of BNP and NT-proBNP generated rise dramatically. This signifies that the heart is working harder and having more difficulty keeping up with the needs of the body. This might happen as a result of heart failure or other disorders that affect the heart and circulatory system. The term “heart failure” can be deceptive. It doesn’t mean the heart has stopped beating; it simply indicates it isn’t pumping blood as efficiently as it should be. This reduced capacity will be reflected in an increase in circulating BNP or NT-proBNP.

Lab tests often ordered with a B-Type Natriuretic Peptide test:

  • Troponin I
  • Creatine Kinase (CK)
  • Myoglobin
  • Hs-CRP
  • NT-proBNP
  • Comprehensive Metabolic Panel (CMP)
  • Electrolytes
  • Complete Blood Count (CBC)

Conditions where a B-Type Natriuretic Peptide test is recommended:

  • Congestive Heart Failure
  • Heart Disease
  • Angina
  • Heart Attack
  • Acute Coronary Syndrome

How does my health care provider use a B-Type Natriuretic Peptide test?

B-type natriuretic peptide testing is most commonly used to identify, diagnose, and assess the severity of heart failure. It can be used in conjunction with other cardiac biomarker tests to detect heart stress and damage, or it can be used in conjunction with lung function tests to differentiate between causes of shortness of breath. X-rays of the chest and an ultrasound test called echocardiogram may be used.

Heart failure can be misdiagnosed as other illnesses, and it can coexist with them. BNP levels can aid doctors in distinguishing between heart failure and other issues like pulmonary illness. Because the therapies are typically diverse and must be started as soon as possible, a precise diagnosis is critical.

Although BNP is commonly used to detect heart failure, an elevated level in those who have had an acute coronary syndrome implies a higher risk of repeat episodes. As a result, a health care provider can use BNP to assess the risk of a future cardiac attack in someone who has ACS.

What do my BNP test results mean?

Higher-than-normal results indicate that a person has heart failure, and the level of BNP in the blood is linked to the severity of the condition. BNP levels beyond a certain threshold are generally linked to a poor prognosis.

The person's symptoms are most likely caused by anything other than heart failure if the results are normal.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: A BUN/Creatinine ratio test is a blood test that measures levels of Urea Nitrogen and Creatinine in your blood and is useful in the diagnosis of renal disease.

Also Known As: Urea Nitrogen and Creatinine Ratio test, BUN test, Urea test, Urea Nitrogen test, Creat test, Blood Creatinine Test, Serum Creatinine Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is a BUN Creatinine Ratio test ordered?

BUN is a component of the BMP and CMP, two categories of widely-used tests:

  • as part of a regular health examination
  • prior to beginning the use of specific pharmacological therapy, determine how well the kidneys are functioning.
  • When a patient who is critically ill visits the emergency room or is admitted to the hospital

When kidney problems are suspected during a hospital stay, BUN is frequently ordered along with creatinine or a renal panel. Kidney dysfunction can show several indications and symptoms, such as:

  • fatigue, inability to focus, poor appetite, or difficulty sleeping
  • Swelling or puffiness, especially in the face, wrists, abdomen, thighs, or ankles or around the eyes
  • Foamy, bloody, or coffee-colored urine
  • a reduction in the urine's volume
  • problems urinating, such as a burning sensation or an unusual discharge, or a change in frequency, particularly at night
  • discomfort in the middle of the back, below the ribs, and next to the kidneys
  • elevated blood pressure

BUN may also be required for:

  • Patients with long-term illnesses or conditions like diabetes, congestive heart failure, and myocardial infarction should have regular kidney function checks.
  • monitoring renal function and treatment at frequent intervals in individuals with known kidney disease
  • Monitoring kidney function both before and after taking specific medications
  • When a CT scan is anticipated, furthermore to a creatinine
  • periodically to check on the efficiency of the dialysis

During a health examination, a routine metabolic panel that includes creatinine may be ordered. It might be prescribed if a patient is critically ill or if a doctor has reason to believe that their kidneys aren't functioning properly. Kidney dysfunction can show several indications and symptoms, such as:

  • fatigue, inability to focus, poor appetite, or difficulty sleeping
  • Swelling or puffiness, especially in the face, wrists, abdomen, thighs, or ankles, or around the eyes
  • Foamy, bloody, or coffee-colored urine
  • a reduction in the urine's volume
  • problems urinating, such as a burning sensation or an unusual discharge, or a change in frequency, particularly at night
  • discomfort in the middle of the back, below the ribs, and next to the kidneys
  • elevated blood pressure

When a person has a known kidney ailment or a condition that could impair kidney function, a creatinine blood test may be prescribed along with a BUN test, urine albumin, and other tests on a regular basis. When a CT scan is anticipated, before and throughout some medication regimens, as well as before and after dialysis, both BUN and creatinine may be requested to check the efficacy of treatments.

What does a BUN Creatinine Ratio test check for?

When protein is broken down into its constituent parts in the liver, urea is produced as a waste product. Ammonia is created during this process, and it is later changed into the less harmful waste product urea. This examination counts the urea nitrogen levels in the blood.

Ammonia and urea both contain nitrogen as an ingredient. Because urea contains nitrogen and because the body excretes excess nitrogen via urea/urea nitrogen, the terms urea and urea nitrogen are sometimes used interchangeably. The liver releases urea into the blood, which travels to the kidneys where it is removed from the circulation and discharged as urine. Since this is a continuous process, urea nitrogen levels in the blood are typically low and steady.

The majority of illnesses or ailments that affect the liver or kidneys have the potential to have an impact on the blood's urea content. Urea concentrations in the blood will increase if the liver produces more urea or if the kidneys are not functioning properly and are having trouble removing wastes from the blood. BUN values may decrease if severe liver illness or injury prevents the synthesis of urea.

Muscles release creatinine as a waste product after breaking down a substance called creatine. The kidneys eliminate creatinine from the body by filtering nearly all of it from the blood and releasing it into the urine. The creatinine level in the blood and/or urine is determined by this test.

The process that creates the energy required to contract muscles includes creatine. The body produces both creatine and creatinine at a fairly steady rate. Blood levels are typically a good indication of how well the kidneys are functioning since the kidneys filter almost all of the creatinine from the blood and release it into the urine. The amount created is influenced by a person's size and muscular mass. As a result, men's creatinine levels will be a little bit greater than those of women and children.

Calculations that are used to assess kidney function can be done using data from a blood creatinine test in conjunction with data from other tests, including a 24-hour urine creatinine test.

Lab tests often ordered with a BUN Creatinine Ratio test:

  • Urine Protein
  • eGFR
  • Creatinine Clearance
  • Comprehensive Metabolic Panel
  • Basic Metabolic Panel
  • Cystatin C
  • Renal Panel
  • Urinalysis
  • Microalbumin
  • Beta-2 Microglobin

Conditions where a BUN Creatinine Ratio test is recommended:

  • Kidney Disease
  • Diabetes
  • Hypertension
  • Proteinuria

How does my health care provider use a BUN Creatinine Ratio test?

The creatinine test and blood urea nitrogen tests are primarily used to assess kidney function under various conditions, aid in the diagnosis of kidney illness, and keep track of persons who have either acute or chronic renal failure or dysfunction. When requested as a component of a renal panel, basic metabolic panel, or comprehensive metabolic panel, it may also be used to assess a person's overall health state.

When protein is digested in the liver, urea is produced as a waste product. The liver releases urea into the blood, which travels to the kidneys where it is removed from the circulation and discharged as urine. Since this is a continuous process, urea nitrogen levels in the blood are typically low and steady. However, the level of urea in the blood will increase if the kidneys become diseased or damaged and are unable to remove waste products from the blood.

The kidneys are a pair of bean-shaped organs that are situated on the right and left sides of the back at the base of the ribcage. They include around a million nephrons, which are very small blood filtering organs. Blood is continuously filtered via a glomerulus, a tiny collection of looping blood arteries, in each nephron. Water and tiny molecules can pass through the glomerulus, while blood cells and bigger molecules are retained. Each glomerulus has a little tube attached to it that gathers the fluid and molecules that flow through it and reabsorbs what the body can use. Urine is created by the leftover waste.

Creatinine and BUN tests may be performed to monitor for renal dysfunction and the efficacy of treatment if the results are abnormal or if a person has an underlying condition known to impact the kidneys, such as diabetes or high blood pressure. Before some procedures, such a CT scan, that can call for the use of medications that can harm the kidneys, such as creatinine and BUN tests in the blood may also be prescribed to assess renal function.

What do my BUN Creatinine Ratio test results mean?

BUN levels that are higher indicate poor renal health. This could be brought on by failure, injury, or acute or chronic renal disease. A condition that reduces blood flow to the kidneys, such as congestive heart failure, shock, stress, a recent heart attack, or serious burns, as well as conditions that impede urine flow or dehydration, may also be to blame.

When there is excessive protein breakdown, a considerable rise in the amount of protein in the diet, or gastrointestinal bleeding, BUN values may be increased.

Low BUN levels are rare and typically not reason for alarm. The BUN test is not typically used to diagnose or monitor these disorders, but they may appear in severe liver illness, malnutrition, and occasionally when a person is overhydrated.

BUN values may be normal even in the presence of substantial malfunction in the other kidney if one kidney is fully functional.

Blood creatinine levels that are higher than normal point to renal disease or other disorders that have an impact on kidney function. These may consist of:

For instance, infections or autoimmune illnesses can cause kidney blood vessels to enlarge or become damaged.

  • infection of the kidneys with bacteria
  • death of kidney cells brought on by chemicals or medications, for instance, in the tiny tubes of the kidneys
  • Urinary tract obstruction can be brought on by prostate disease, kidney stones, or other conditions.
  • reduced renal blood flow brought on by shock, dehydration, congestive heart failure, atherosclerosis, or diabetes-related problems

Although they are uncommon, low blood creatinine levels are often not a cause for alarm. They can be observed in diseases that cause a loss of muscular mass.

As part of a creatinine clearance test, 24-hour urine creatinine levels are compared to blood levels.

There are no established reference ranges for single, random urine creatinine values. They are typically used in conjunction with other exams to compare levels of other chemicals detected in urine. The urine albumin test, the urine albumin/creatinine ratio, and the urine protein test are a few examples.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: A hs-CRP or High Sensitivity C-Reactive Protein test is a blood test used to accurately detect lower concentrations of the protein C-Reactive Protein. This test is used to evaluate your risk of cardiovascular and heart disease and to check for inflammation and many other issues.

Also Known As: hsCRP Test, Cardiac CRP Test, high sensitivity C-reactive protein Test, CRP Test for heart disease.

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is a hs-CRP test ordered?

There is currently no consensus on when to get an hs-CRP test. It may be beneficial for treatment purposes to order hs-CRP for those that have kidney disease, diabetes or inflammatory disorders.

It's possible that hs-CRP will be tested again to confirm that a person has persistently low levels of inflammation.

What does a hs-CRP blood test check for?

C-reactive protein is a protein found in the blood that rises in response to infection and inflammation, as well as after trauma, surgery, or a heart attack. As a result, it's one of numerous proteins referred to as acute phase reactants. The high-sensitivity CRP test detects low levels of inflammation in the blood, which are linked to an increased risk of developing cardiovascular disease.

According to the American Heart Association, CVD kills more people in the United States each year than any other cause. A number of risk factors have been related to the development of CVD, including family history, high cholesterol, high blood pressure, being overweight or diabetic, however a considerable number of people with few or no recognized risk factors will also acquire CVD. This has prompted researchers to investigate for new risk variables that could be causing CVD or could be used to identify lifestyle modifications and/or treatments that could lower a person's risk.

High-sensitivity CRP is one of an increasing number of cardiac risk markers that may be used to assess an individual's risk. According to certain research, monitoring CRP with a highly sensitive assay can assist identify the risk level for CVD in persons who appear to be healthy. CRP levels at the higher end of the reference range can be measured with this more sensitive test. Even when cholesterol levels are within an acceptable range, these normal but slightly elevated levels of CRP in otherwise healthy persons might indicate the future risk of a heart attack, sudden cardiac death, stroke, and peripheral artery disease.

Lab tests often ordered with a hs-CRP test:

  • Complete Blood Count
  • Lipid Panel
  • Comprehensive Metabolic Panel
  • Lp-Pla2
  • Glucose

Conditions where a hs-CRP test is recommended:

  • Heart Attack
  • Heart Disease
  • Cardiovascular Disease
  • Stroke

How does my health care provider use a hs-CRP test?

A test for high-sensitivity C-reactive protein can be used to assess a person's risk of cardiovascular disease. It can be used in conjunction with a lipid profile or other cardiac risk markers, such as the lipoprotein-associated phospholipase A2 test, to provide further information regarding the risk of heart disease.

CRP is a protein that rises in the bloodstream as a result of inflammation. A continuous low level of inflammation, according to studies, plays a crucial role in atherosclerosis, the narrowing of blood vessels caused by the build-up of cholesterol and other lipids, which is typically linked to CVD. The hs-CRP test successfully detects low levels of C-reactive protein, indicating low but chronic inflammation, and so aids in predicting a person's risk of developing CVD.

Some specialists believe that high-sensitivity CRP is a good test for assessing CVD, heart attacks, and stroke risk, and that it can help in the evaluation process before a person gets one of these health problems. Some experts believe that combining a good marker for inflammation, such as hs-CRP, with a lipid profile is the best way to predict risk. This test has been recommended by several organizations for persons who are at a moderate risk of having a heart attack in the following ten years.

What does my hs-CRP test result mean?

Even when cholesterol levels are within an acceptable range, high levels of hs-CRP in otherwise healthy people have been found to predict an elevated risk of future heart attacks, strokes, sudden cardiac death, and/or peripheral arterial disease.

Higher hs-CRP concentrations indicate a higher risk of cardiovascular disease, while lower values indicate a lower risk. Individuals with hs-CRP values at the high end of the normal range are 1.5 to 4 times more likely than those with low levels of hs-CRP to have a heart attack.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Cardio IQ® Lipoprotein Subfractionation, Ion Mobility

Clinical Significance

There is a correlation between increased risk of premature heart disease with decreasing size of LDL particles. Ion mobility offers the only direct measurement of lipoprotein particle size and concentration for each lipoprotein from HDL3 to large VLDL.

Includes

HDL Particle Number; LDL Particle Number; Non-HDL Particle Number; HDL, Small; HDL Large; LDL, Very Small-d; LDL, Very Small-c; LDL, Very Small-b; LDL, Very Small-a; LDL Small; LDL Medium; LDL, Large-b; LDL, Large-a; IDL, Small; IDL, Large; VLDL, Small; VLDL, Medium; VLDL, Large; LDL Pattern; LDL Peak Size

Patient Preparation

Fasting preferred

Methodology

Ion Mobility

 


Description: Ion Mobility Lipoprotein Fractionation is a test that uses a gas-phase technology to separate the lipid particles by size. As each particle is separated, they are counted.

Also Known As: LDL Particle Testing, LDL-P Test, LDL Subclass Test, sdLDL Test, LDL Fractionations Test, LDL Particle Size Test, LDL Particle Number Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: Fasting preferred, but not required

When is a Lipoprotein Fractionation test ordered?

When someone has a personal or family history of early cardiovascular disease, this testing may be ordered as part of an overall evaluation of cardiac risk, especially if the person does not have typical cardiac risk factors like high cholesterol, high LDL cholesterol, high triglyceride, low HDL cholesterol, smoking, obesity, inactivity, diabetes, and/or hypertension.

When a person with elevated LDL-P and/or a high proportion of tiny, dense LDL particles has undertaken cholesterol-lowering treatment or lifestyle adjustments, the healthcare practitioner may conduct LDL lipoprotein subfraction testing, as well as other lipid tests, to assess treatment success.

Although LDL-P is not typically suggested as a screening test, some healthcare practitioners are using it in conjunction with a battery of other cardiac risk tests to evaluate a person's overall risk of getting CVD.

What does a Lipoprotein Fractionation blood test check for?

Low-density lipoproteins are lipid-transporting particles that travel throughout the body. Protein, cholesterol, triglyceride, and phospholipid molecules are all present in each particle. As they move through the bloodstream, their makeup changes. Lipoprotein particles range in size from large and fluffy to small and dense, depending on which molecules are eliminated and which are added. The relative amounts of particles with different characteristics in the blood are determined by LDL particle testing. Subfractionation testing is a term used to describe this process.

Traditional lipid testing determines the amount of LDL cholesterol in the blood but does not assess the number of LDL particles. Increased numbers of small, dense LDL particles have been linked to inflammation and are more likely to produce atherosclerosis than fewer light, fluffy LDL particles, according to some research. Researchers believe that the existence of an elevated quantity of sdLDL could be one of the reasons why some people have heart attacks while having relatively low total and LDL cholesterol levels.

The number of sdLDL particles in a person's blood is determined in part by genetics, in part by sex, and in part by lifestyle and overall health. Increased levels of sdLDL are linked to certain diseases and disorders, like as diabetes and hypertension.

By examining a person's triglyceride and high-density lipoprotein cholesterol levels, it is usually able to estimate whether they have a high amount of sdLDL particles. Typically, these tests are done as part of a lipid profile. People with high triglycerides and low HDL-C have higher levels of sdLDL. More sdLDL is connected with a triglyceride level greater than 120 mg/dL and an HDL-C level less than 40 mg/dL in men and less than 50 mg/dL in women.

Other lipoprotein particles, such as HDL and VLDL, can also be subfractionated, however these tests are generally utilized in research settings and are not discussed on this page.

Lab tests often ordered with a Lipoprotein Fractionation test:

  • Lipid Panel
  • HDL Cholesterol
  • LDL Cholesterol
  • Direct LDL
  • Apolipoprotein A-1
  • Apolipoprotein B
  • Lipoprotein (a)
  • Triglycerides
  • Homocysteine
  • Hs-CRP
  • VAP

Conditions where a Lipoprotein Fractionation test is recommended:

  • Cardiovascular Disease
  • Heart Disease

How does my health care provider use a Lipoprotein Fractionation test?

Low-density lipoprotein particle testing determines the number, size, density, and/or electrical charge of LDL particles. It may be useful in determining cardiac risk in patients with a personal or family history of heart disease at a young age, particularly if their total cholesterol and LDL cholesterol levels are not markedly increased. LDL subfraction testing is usually done in conjunction with or after a lipid profile.

While the LDL-C test is a good predictor of cardiovascular disease risk for many people, research has indicated that certain persons with healthy LDL-C levels nonetheless have an increased risk of CVD. Similarly, even if their LDL-C is at a safe level, people with chronic diseases like diabetes may be at higher risk. The quantity of LDL particles and/or their size has been recommended as an additional factor to consider when assessing CVD risk in these populations. Lipoprotein subfraction testing may be done in these situations to further assess a person's CVD risk.

LDL-P is sometimes requested to see how well a treatment is working at reducing the quantity of tiny, dense LDL particles.

LDL subfraction testing has been employed in clinical settings, although VLDL or HDL subfraction testing is primarily used in research. This is because LDL cholesterol has been established as the key risk factor for heart disease, and LDL assessment has received increased attention in research and development.

What do my Lipoprotein Fractionation test results mean?

The method and reporting format utilized in an LDL-P test, as well as the person's total cholesterol, LDL-C, VLDL, and/or HDL cholesterol, are all reflected in the results. Because different methods divide subclasses based on different physical qualities, results may not be immediately comparable from one method to the next or from one laboratory to the next.

Usually, the result is evaluated in context of a lipid profile and the risk it implies:

  • If a person has a high number of mostly tiny, dense LDL and an elevated LDL-P, this result will enhance the person's risk of cardiovascular disease beyond the risk associated with total LDL.
  • If a person only has large, fluffy LDL and a low LDL-P, this discovery will not put them at any greater risk.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Clinical Significance
Lipoprotein Fractionation, NMR - The Lipoprotein Fractionation, NMR test is used to help assess the risk for cardiovascular disease (CVD) in patients with intermediate or high risk based on traditional or emerging risk factors, and to assess therapeutic response in patients undergoing lipid-lowering therapy.

Includes
LDL P, Small LDL P, LDL Size
HDL P, Large HDL P, HDL Size
Large VLDL P, VLDL Size

Patient Preparation
Patient should be fasting 12 hours


Cardio IQ® Diabetes and ASCVD Risk Panel with Scores - Includes:  Cardio IQ® Glucose; Cardio IQ® Hemoglobin A1c; Cardio IQ® Cholesterol, Total; Cardio IQ® HDL Cholesterol; Cardio IQ® Triglycerides; Cardio IQ® Non-HDL and Calculated Components; Cardio IQ® Risks and Personal Factors

If Triglyceride is >400 mg/dL, Cardio IQ® Direct LDL will be performed at an additional charge (CPT code(s): 83721).

Clinical Significance

The increasing prevalence of obesity has led to an epidemic of diabetes mellitus and related complications, including ASCVD. Prediction of the risk of ASCVD and of developing diabetes in the Cardio IQ® lab report will simplify and improve the communication of those risks to patients.

This panel provides the 10-year and lifetime risk of ASCVD events and the 8-year risk of developing diabetes. The lipid panel results will aid in the assessment of ASCVD. Assessment of 10-year risk of a first atherosclerotic cardiovascular (ASCVD) event is recommended by the 2013 ACC/AHA Guidelines on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults. These guidelines recommend initiating statin therapy based on 10-year ASCVD risk score. Assessment of 8-year risk of developing diabetes mellitus is based on laboratory test results with anthropomorphic data and family history. This algorithm was developed in the Framingham cohort, and is intended to aid in the identification of patients at risk for developing diabetes, permitting pharmacological or lifestyle interventions.

IMPORTANT: For risk calculations to be performed, the following patient-specific information must be provided and recorded at the time of specimen collection:

  • Age: Years 
  • Gender: M (for male) or F (for female) 
  • Height Feet: Feet 
  • Height Inches: Inches 
  • Weight: lbs 
  • Race-African American: Y (for yes) or N (for no) 
  • Systolic Blood Pressure: mmHg
  • Diastolic Blood Pressure: mmHg
  • Treatment for High B.P.: Y (for yes) or N (for no) 
  • Diabetes Status: Y (for yes) or N (for no)
  • Parental History of Diab: Y (for yes) or N (for no) 
  • Smoking Status: Y (for Yes) or N (for no)


The heart, a muscular organ that is in the region of the chest in between the lungs, is about the size of an adult fist. The job of the heart is to pump blood, and it can beat as much as 100,000 times per day. The blood carries nutritious oxygen and nutrients through the body, and it works to transport carbon dioxide and waste materials to the kidneys, lungs, and the liver. In these organs, the toxins are then removed from the body via natural processes.  

The heart makes sure that it has plenty of oxygen via coronary arteries and veins throughout the heart. It’s also a part of the endocrine system producing hormones called atrial natriuretic peptides or ANP. It also creates B natriuretic peptides or BNP that help to coordinate the function of the heart via the blood vessels and kidneys.  

Essentially, the heart is a hollow that has two vertically divided halves. These halves are divided by a septum, and either side has two internal chambers. The atrium is the top chamber, and the ventricle is the bottom chamber.  

As blood returns from the body, it is poor in oxygen. It enters via the veins on the right-hand side of the heart via the right atrium. It is then pumped into the right ventricle where it goes to the lungs and releases and accepts carbon dioxide and oxygen. This blood is now oxygenated, and it will return via the left atrium, where it will be pumped out of the left ventricle into the arteries and the rest of the body.  

Four valves regulate the blood flow as it goes through the heart chambers. As they open and close, you can hear the “lub-dub” sound via a stethoscope or if you lay an ear to someone’s chest. There is an electrical system that works to control the rate and the rhythm as the heartbeats.  

The myocardium is the heart muscle. There is an endocardium that is a membrane that lines the heart chambers as well as the valves. The pericardium is the outer layer membrane of the heart and works to secrete fluids. Finally, the pericardium works as a protective barrier that surrounds the heart and works to give it a friction-free environment.  

The term heart disease encompasses many medical conditions that affect the heart. Any condition that damages or decreases the heart supply of oxygen or can affect its efficiency can interfere with the relationship between the kidneys, heart, blood vessels, and more. It can also affect the rest of the body. Occasionally, heart conditions are present at birth or, they may develop over the course of the lifetime.  

Approximately 610,000 persons die annually of heart disease in the United States per the Center for Disease Control and Prevention. That’s approximately 1 out of every 4 people who die. At present, heart disease is the leading cause of death for both males and females.  

Common Conditions of The Heart 

Some common conditions of heart disease include: 

  • CHD or Coronary Heart Disease, and CAD or Coronary Artery Diseaseare two of the most common conditions. Typically, they’re a part of cardiovascular disease or CBD. The arteries in the heart become narrow over time, and eventually, more fatty deposits build-up and form plaque in the arteries. This is called atherosclerosis. This can greatly limit the amount of blood that flows through the arteries. In time, left unchecked, this can lead to angina, a stroke, or a heart attack.  
  • Intermittent chest pain is called angina. This is due to not enough blood and oxygen getting to the heart or ischemia. Typically, angina happens when most of the flow of blood is lost to a specific area in the heart. It can cause chest pain and worsen with exercise over time. The chest pain can develop during rest or even with minimal exertion and is called unstable angina.  
  • MI, myocardial infarction, or heart attacks are the death of the heart muscle cells due to lack or blocked blood flow in the arteries that give the oxygen to the blood. Such a condition can cause a sudden onset of pain in the chest. There are different reasons for this, including angina and heart attack.  
  • SCA or Sudden Cardiac Arrest is when the heart suddenly stops. If not treated in minutes, this can lead to death. The blood will cease flowing to the brain and the other vital organs of the body. 
  • CHF or Congestive Heart Failure happens when the heart isn’t as effective at pumping the blood through the body. It may not completely fill with blood or completely empty of blood. The oxygen levels to the other parts of the body will cease or be seriously decreased. Blood may back up into the hands, the legs, feet, liver, and the lungs. This can cause swelling, and the patient may develop shortness of breath and fatigue more easily. If it’s a temporary cause, heart failure may only be temporary; however, it’s typically a more chronic condition that will worsen over the course of time. Sometimes it can be improved with treatment.  
  • Cardiomyopathy 
  • Cardiomyopathy is a condition wherein the heart muscle is abnormal.  
  • Hypertrophic cardiomyopathy: one or even more of the walls within the heart thicken. 
  • Dilated cardiomyopathy: one or even more of the chambers in the heart dilate or enlarge.  
  • Restrictive cardiomyopathy: sometimes, abnormal materials accumulate within the heart wall, thus reducing the flexibility of the ventricle walls.  
  • Idiopathic cardiomyopathy: no obvious reason for the condition. 
  • Ischemic cardiomyopathy: lessened blood flow to the heart.  
  • Myocarditis is inflammation of the heart muscle. It can happen rapidly and have shortness of breath, an irregular heartbeat, and lead to heart failure rapidly.  
  • Pericardial disease is when the sac that surrounds the heart is diseased. This inflammation of the pericardium can lead to more rubbing or friction in the chest cavity and lead to pain.  
  • Endocarditis or inflammation of the membrane that lines the heart valves and the heart.  
  • Atrial fibrillation is an arrhythmia that can lead to a quivering sensation of irregular heartbeat. It can cause blood clots, heart failure, stroke, and other complications.  

Heart Valve Conditions: 

Prolapse happens when a portion of the valve in the heart protrudes into the atrium of the heart, which prevents a tight seal. This may lead to regurgitation or backflow of the blood. It may also lead to an increased chance of endocarditis.  

Stenosis or narrowing of the valve opening in the heart can affect the blood flow, depending on the valve that is affected. There is pulmonary valve stenosis, mitral valve stenosis, and aortic valve stenosis.  

Many conditions may be contributing factors to heart disease. Here are some examples: 

  • Alcohol Abuse 
  • Anabolic Steroid Use 
  • Amyloidosis (a rare progressive disorder that is caused by abnormal proteins termed amyloids that are produced and then deposited throughout the organs of the body). 
  • Atherosclerosis which are deposits that are comprised of mostly lipids happening on the walls of the arteries causing decreased blood flow. 
  • Autoimmune disorders 
  • Congenital (present at birth) defects. 
  • Diabetes 
  • Diets that are high in saturated fats or cholesterols. 
  • Drug use, including cocaine. 
  • Overexposure to chemicals and toxins, including mercury. 
  • Hypertension or high blood pressure. 
  • Bacterial, viral, or fungi infections. 
  • Trauma infections. 
  • Rheumatic fever (rarely in the United States now). 
  • Smoking cigarettes. 
  • Sedentary lifestyle habits. 
  • Thyroid dysfunction (over or underactive thyroid). 

Signs and Symptoms of Heart Disease 

Heart disease may develop over the course of time (chronic), or it may have a rapid onset (acute). It may also come and go. It may be rapidly progressive, or it may remain stable. There may be many causes or no obvious cause. The symptoms may often change or become worse over time.  

Chronic heart diseases may become acutely worse in time. Such conditions may resolve on their own, or they may worsen and become a life-threatening condition. 

Those who have early-onset heart conditions may have a few symptoms, including:  

  • Shortness of breath 
  • Fatigue 
  • Nausea 
  • Dizziness 
  • However, the symptoms don’t necessarily indicate that there is heart disease in the person. They may also be indicative of other medical conditions.  

As the disease continues and progresses, the signs and the symptoms may become worse and include other symptoms, including: 

  • Swollen feet, ankles, legs, or abdomen. 
  • Irregular heartbeats or changes in the heart rhythm. 
  • Pressure or discomfort (chest pain). 
  • Left shoulder, arm, jaw, or back pain. 
  • Dilation stretching of the heart chambers. 
  • Unable to produce enough oxygen and clear waste products from the blood and body while undergoing physical activities. 
  • Insufficient contractions of the heart, preventing it from completely and properly pumping blood. 
  • Ventricular hypertrophy or increased thickness of the heart walls that cause a decrease in the flexibility of the heart. 

Laboratory Blood Tests 

  • Screening for cardiovascular disease risks. 
  • Cardiac risk tests are done to screen out those who are asymptomatic. These tests help to determine the risk of the person for developing coronary heart disease. Cardiac risk assessments are a series of tests that determine the person’s risk and their health factors to indicate whether they are at risk for a stroke or a heart attack. These factors include the person’s age, genetics (family history), level of physical activity, and blood pressure.  

Such Lab Tests May Include:

Lipid Panels (levels of HDL-C, LDL-C, triglycerides, and cholesterol). Such tests measure the levels and types of lipids or fats in the blood. 

hs-CRP detects the low levels of the C-reactive proteins. These are markers for inflammation associated with atherosclerosis and other conditions. 

Lp(a) can potentially be used to detect elevated levels of lipoproteins. They can indicate modifications of LDL-C that denote increased risks of atherosclerosis. These tests may be done in combination with other routine lipid panels to gain more details and information.  

Other detailed tests may be considered regarding the markers for heart disease. You can read more here on Cardiac Risk Assessment. 

Diagnosing the Damage to The Heart from Heart Attacks 

When someone enters an Emergency room presenting with a possible heart attack, they are evaluated with a myriad of laboratory tests and blood tests to evaluate their condition. Such testing is utilized to determine the extent of damage and whether the person has had a heart attack or some other medical issue. For the treatments to be effective, they must be given to the person within a short time frame. The sooner the treatments are begun, the less damage there is to the heart. Thus, the diagnosis must be accurate.  

Some tests detect the proteins that are released when specific muscle cells are damaged. These are frequently called biomarkers, and they can be in specific orders when someone has a heart attack. There is chest pain, jaw pain, neck or abdominal pain, back pain that radiates to the arms or shoulders, as well as nausea, shortness of breath, and even lightheadedness.  

Tests 

  • Troponin or sensitivity to troponin tests is typically ordered to help to diagnose heart attacks and rule out other medical issues that may be very similar. Elevated troponins or slight elevations may be indicative of the amount of damage to the heart. If your levels are elevated, and they elevate over the course of several hours, then it’s potentially likely that you’ve had a heart attack. These levels will change within 3 to 6 hours after your heart is injured, and they may remain at these higher levels for as long as 10 to 14 days.  
  • CK-MB – CK and CK-MB used to be the main tests that were done to monitor or detect a heart attack. These were done if a troponin test wasn’t available. If the CK is elevated, then a CK-MB test could be used as a follow-up to determine the level of damage to the body. 
  • BNP or NT-pro BNP is released from the body in a natural response to heart failure. When the BNP levels increase, they may not be a true diagnostic for a heart attack, they may also indicate an increased risk for complications in those with ACS.  BNP is released when the heart is stretched. It’s measured in persons who have swelling in the legs or abdomen and shortness of breath. It can help to diagnose heart failure.  
  • Pericardial fluid analysis analyzes the fluids in the sac surrounding the heart. Doctors may be able to determine if there is fluid around the heart, causing heart issues.  
  • Blood cultures may also be done to determine if there is a heart infection or endocarditis. 

More heart tests may include the following: 

  • hs-CRP can determine the prognosis and whether there is a risk of a recurrence in coronary heart disease.  
  • Blood gases are performed to determine the levels of oxygen and carbon dioxide. 
  • A comprehensive metabolic panel or CMP is done to evaluate the function of the heart.  
  • Four electrolyte tests evaluate the fluid levels and salt balance. 
  • A complete blood count or CBC evaluates the blood cells and checks for anemia and infections.