Keto Diet

Keto Diet and health information

Have you been on the keto diet for a while now?

You might be wondering if your body is getting all of the essential nutrients it needs to function properly. Ulta Lab Tests can help! We offer affordable keto diet blood tests that will give you an accurate reading of your nutritional biomarkers and blood chemistry, with results sent confidentially online in 24 to 48 hours.

We offer a variety of different lab tests that will help you understand how well you are doing on the ketogenic lifestyle. You'll be able to see if there are any deficiencies or imbalances in your body that could be causing problems for yourself. If there is something wrong, it will be reflected in the results of your biomarkers. With your tests results, you will know what biomarkers are out of balance so that you can take action to correct them to stay healthy! Our lab testing services are fast, easy, and confidential. Don't wait another day without knowing what's happening inside your body.

Order your lab tests for keto diet deficiencies from Ulta Lab Tests today by selecting the keto lab tests panel below that is right for you. It's time to retake control of your health.

To get the right test for you, choose from the selections below.

For additional information on Keto Diet Deficiencies and Lab Testing, click here.


Name Matches
  • Apolipoprotein B
  • Glucose
  • Hemoglobin A1c (HgbA1C)
  • hs-CRP
  • Insulin
  • Lipid Panel with Ratios
  • Lipoprotein (A)
  • Lipoprotein Fractionation, Ion Mobility, Cardio IQ™
  • T3, Free
  • T4, Free
  • TSH

Keto Lab Test Panel - Basic includes the following tests.

  • CBC (includes Differential and Platelets)
  • Comprehensive Metabolic Panel (CMP)
  • Hemoglobin A1c (HgbA1C)
  • Insulin
  • Lipid Panel, Cardio IQ™
  • Lipoprotein Fractionation, Ion Mobility, Cardio IQ™
  • TSH
  • Uric Acid
  • Urinalysis (UA), Complete

 


Keto Lab Test Panel - Basic Plus includes the following tests.

  • CBC (includes Differential and Platelets)
  • Comprehensive Metabolic Panel (CMP)
  • Ferritin
  • Hemoglobin A1c (HgbA1C)
  • Insulin
  • Lipid Panel, Cardio IQ™
  • Lipoprotein (a), Cardio IQ™
  • Lipoprotein Fractionation, Ion Mobility, Cardio IQ™
  • QuestAssureD™ 25-Hydroxyvitamin D (D2, D3), LC/MS/MS
  • T3, Free
  • T4 (Thyroxine), Total
  • TSH
  • Uric Acid
  • Urinalysis (UA), Complete

Keto Lab Test Panel - Advanced includes the following tests.

  • C-Peptide
  • CBC (includes Differential and Platelets)
  • Comprehensive Metabolic Panel (CMP)
  • Ferritin
  • Hemoglobin A1c (HgbA1C)
  • hs-CRP
  • Insulin
  • Lipid Panel, Cardio IQ™
  • Lipoprotein (a), Cardio IQ™
  • Lipoprotein Fractionation, Ion Mobility, Cardio IQ™
  • QuestAssureD™ 25-Hydroxyvitamin D (D2, D3), LC/MS/MS
  • T3, Free
  • T4 (Thyroxine), Total
  • TSH
  • Uric Acid
  • Urinalysis (UA), Complete

Keto Lab Test Panel - Comprehensive includes the following tests.

  • Apolipoprotein B, Cardio IQ™ 
  • C-Peptide
  • CBC (includes Differential and Platelets) 
  • Comprehensive Metabolic Panel (CMP)
  • Ferritin
  • Hemoglobin A1c (HgbA1C)
  • hs-CRP
  • Insulin
  • Lipid Panel, Cardio IQ™ 
  • Lipoprotein (a), Cardio IQ™ 
  • Lipoprotein Fractionation, Ion Mobility, Cardio IQ™ 
  • Magnesium
  • QuestAssureD™ 25-Hydroxyvitamin D (D2, D3), LC/MS/MS 
  • T3, Free
  • T4 (Thyroxine), Total
  • TSH
  • Uric Acid
  • Urinalysis (UA), Complete
  • Vitamin B12 (Cobalamin)

Description: An ALT test is a blood test that is used to screen for and diagnose liver disease.

Also Known As: Alanine Aminotransferase Test, Alanine Transaminase Test, GPT Test, SGPT Test, Serum Glutamic Pyruvic Transaminase Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is an Alanine Transaminase test ordered?

When a person undergoes a standard health examination, ALT may be ordered as part of a full metabolic panel.

When a person has signs and symptoms of a liver problem, a healthcare provider will usually prescribe an ALT test.

Because many people with minor liver damage have no signs or symptoms, ALT may be ordered alone or in combination with other tests for persons who are at an elevated risk for liver disease. With modest liver injury, ALT levels will rise even if there are no other symptoms.

ALT may be ordered on a frequent basis during the course of treatment to establish whether the medication is effective when it is used to monitor the treatment of persons with liver disease.

What does an Alanine Transaminase blood test check for?

Alanine aminotransferase is an enzyme found mostly in liver and kidney cells. It's also found in much lesser concentrations in the heart and muscles. This test determines the amount of ALT in your blood.

The enzyme ALT converts alanine, a protein amino acid, into pyruvate, an important intermediary in cellular energy production. ALT levels in the blood are low in healthy people. ALT is released into the bloodstream when the liver is injured, frequently before more evident indications of liver injury, such as jaundice, appear. As a result, ALT is a useful test for detecting liver disease early on.

The liver is a critical organ positioned directly behind the rib cage on the upper right side of the abdomen. It is engaged in a variety of vital bodily functions. The liver aids in the digestion of nutrients, creates bile to aid in fat digestion, produces a variety of essential proteins such as blood clotting factors and albumin, and breaks down potentially hazardous compounds into safe substances that the body may utilize or discard.

Damage to liver cells can be caused by a variety of factors, resulting in an elevation in ALT. The test is most useful for detecting damage caused by hepatitis or medications or other toxins that are harmful to the liver.

As part of a liver panel, ALT is frequently tested alongside aspartate aminotransferase, another liver enzyme. When the liver is injured, both ALT and AST levels rise, albeit ALT is more specific for the liver and may be the only one to rise in some circumstances. An AST/ALT ratio can be used to help distinguish between different types of liver injury and their severity, as well as to distinguish liver injury from heart or muscle damage.

Lab tests often ordered with an Alanine Transaminase test:

  • AST
  • ALP
  • GGT
  • Bilirubin
  • Liver Panel
  • Comprehensive Metabolic Panel
  • Albumin
  • Total Protein
  • Prothrombin Time
  • Hepatitis Panel General

Conditions where a an Alanine Transaminase test is recommended:

  • Liver Disease
  • Hepatitis
  • Jaundice
  • Cirrhosis
  • Alcoholism
  • Wilson Disease
  • Hemochromatosis

How does my health care provider use an Alanine Transaminase test?

The alanine aminotransferase test is commonly used to diagnose liver damage. It's frequently ordered as part of a liver panel or complete metabolic panel with aspartate aminotransferase to screen for and/or diagnose liver disease.

ALT is an enzyme found mostly in liver and kidney cells. ALT is released into the bloodstream when the liver is injured. As a result, ALT is a useful test for detecting liver disease early on.

Although ALT is more specific to the liver than AST, they are both considered to be two of the most significant tests for detecting liver impairment. When AST is directly compared to ALT, an AST/ALT ratio is calculated. This ratio can assist distinguish between different types of liver disease and identify cardiac or muscle harm.

To assess which type of liver illness is present, ALT values are frequently matched to the results of other tests such as alkaline phosphatase, total protein, and bilirubin.

ALT is frequently requested to monitor the therapy of people with liver disease to evaluate if it is effective, and it can be ordered alone or in combination with other tests.

What do my ALT test results mean?

A low ALT level in the blood is normal and anticipated. The most prevalent cause of ALT levels that are higher than normal is liver disease.

Acute hepatitis and viral infections are the most common causes of very elevated ALT values. ALT levels are normally elevated for 1-2 months after acute hepatitis, but they might take up to 3-6 months to return to normal. ALT levels may also be significantly raised as a result of exposure to liver-toxic medications or other chemicals, or in situations that produce reduced blood flow (ischemia) to the liver.

In chronic hepatitis, ALT levels are frequently less than four times normal. Because ALT levels in this scenario regularly fluctuate between normal and slightly elevated, the test may be ordered frequently to observe if a trend emerges. Other reasons of mild ALT elevations include bile duct obstruction, cirrhosis, heart damage, alcohol addiction, and liver cancers.

ALT is frequently used in conjunction with an AST test or as part of a liver panel. See the Liver Panel article for more information on ALT values in relation to other liver tests.

The ALT level is usually greater than the AST level in most forms of liver disorders, and the AST/ALT ratio is low. There are a few exceptions: in alcoholic hepatitis, cirrhosis, and heart or muscle injury, the AST/ALT ratio is frequently more than 1, and it may be greater than 1 for a day or two after the onset of acute hepatitis.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Apolipoprotein A1 (APO A1) has been reported to be a better predictor than HDL cholesterol and triglycerides for Coronary Artery Disease (CAD). Low levels of APO A1 in serum are associated with increased risk of CAD. The measurement of APO A1 may be of value in identifying patients with atherosclerosis.

Description: Apo A1 and B is a blood test that measures that amount of Apolipoprotein A1 and Apolipoprotein B in the blood’s serum along with the ratio between B/A1. This test is used to assess cardiovascular risk. Low levels of APO A1 are associated with Coronary Artery Disease (CAD) and are said to predict CAD better then triglycerides and HDL does.

Also Known As: Apo A1 and B Test, Apo A1 Test, Apo B Test, APOAB Test, Apolipoprotein B-100 Test, Apolipoprotein Evaluation Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: Fasting for 12 hours is required.

When are Apolipoprotein A1 and B tests ordered?

Apolipoprotein A-I and B, as well as other lipid tests, may be ordered as part of a screening to identify a person's risk of cardiovascular disease.

Apo A-I is a protein that plays a key function in lipid metabolism and is the most abundant protein in HDL, or "good cholesterol." Excess cholesterol in cells is removed by HDL, which transports it to the liver for recycling or elimination. Apo A-I levels tend to rise and fall with HDL levels, and apo A-I deficits are linked to an increased risk of CVD.

Apo B is a protein that plays a role in lipid metabolism and is the major protein component of lipoproteins including VLDL and LDL, popularly known as "bad cholesterol." Apo B concentrations are similar to LDL-C concentrations.

What does Apolipoprotein A1 and B blood tests check for?

Lipids are transported throughout the bloodstream by apolipoproteins, which mix with them. Lipoproteins are held together by apolipoproteins, which protect the water-repellent lipids at their core.

Lipoproteins are cholesterol or triglyceride-rich proteins that transport lipids throughout the body for cell absorption. HDL, on the other hand, is like an empty cab or taxi. It travels to the tissues to collect excess cholesterol before returning it to the liver. Cholesterol is either recycled for future use or eliminated in bile in the liver. The only mechanism for cells to get rid of excess cholesterol is by HDL reverse transport. It protects the arteries and, if enough HDL is present, it can even reverse the formation of fatty plaques, which are deposits caused by atherosclerosis and can contribute to cardiovascular disease.

Sticking with the taxi analogy, the driver is Apolipoprotein A. It permits HDL to be detected and bound by receptors in the liver at the end of the transport by activating the enzymes that load cholesterol from the tissues into HDL. Apolipoprotein A is divided into two types: apo A-I and apo A-II. Apo A-I has a higher prevalence than apo A-II. Apo A-I concentrations can be evaluated directly, and they tend to rise and fall in tandem with HDL levels. Deficiencies in apo A-I are linked to an increased risk of cardiovascular disease.

Chylomicrons are lipoprotein particles that transport dietary fats from the digestive system to tissue, primarily the liver, via the bloodstream. These dietary lipids are repackaged in the liver and combined with apo B-100 to create triglyceride-rich VLDL. This combo is similar to a taxi with a full load of passengers and apo B-100 as the driver. The taxi moves from place to place in the bloodstream, releasing one passenger at a time.

Triglycerides are removed from VLDL by an enzyme called lipoprotein lipase, which produces intermediate density lipoproteins first, then LDL. VLDL contains one molecule of apo B-100, which is kept as VLDL loses triglycerides and shrinks to become the cholesterol-rich LDL. Apo B-100 is detected by receptors on the surface of many different types of cells in the body. The absorption of cholesterol into cells is aided by these receptors.

LDL and apo B-100 transport cholesterol that is essential for cell membrane integrity, sex hormone generation, and steroid production. Excess LDL, on the other hand, can cause fatty deposits in artery walls, as well as blood vessel hardening and scarring. Atherosclerosis is a condition in which fatty deposits restrict blood arteries. The risk of a heart attack increases as the atherosclerotic process progresses.

LDL-C levels, which are typically ordered as part of a lipid profile, tend to mimic Apo B-100 levels. Many experts believe that apo B levels will eventually show to be a more accurate predictor of CVD risk than LDL-C. Others disagree, believing that vitamin B is only a modestly superior choice and that it should not be used on a regular basis. The clinical utility of apo B, as well as other developing cardiac risk markers including apo A-I, Lp(a), and hs-CRP, is still unknown.

Lab tests often ordered with Apolipoprotein A1 and B tests:

  • Cholesterol Total
  • HDL Cholesterol
  • LDL Cholesterol
  • Triglycerides
  • Lipid Panel
  • Lipoprotein (a)
  • Homocysteine
  • hs-CRP
  • Lipoprotein Fractionation, Ion Mobility

Conditions where Apolipoprotein A1 and B tests are recommended:

  • Cardiovascular Disease
  • Heart Attack
  • Stroke
  • Congestive Heart Failure
  • Angina

How does my health care provider use Apolipoprotein A1 and B tests?

An apo B/apo A-I ratio can be determined by ordering both an apo A-I and an apo B test. To assess the risk of developing CVD, this ratio is sometimes used instead of the total cholesterol/HDL ratio.

An apo A-I test may be ordered in the following situations:

Assist in the diagnosis of apo A-I deficiency caused by genetic or acquired diseases.

Assist those with a personal or family history of heart disease, high cholesterol, or triglycerides in their blood.

Keep track of how well lifestyle changes and lipid therapies are working.

An apo A-I test can be ordered in conjunction with an apo B test to determine the apo B/apo A-I ratio. This ratio is occasionally used instead of the total cholesterol/HDL ratio to assess the risk of developing CVD.

As an alternative to non-HDL-C, Apo B levels may be ordered to assess the success of lipid treatment.

An apo B test may be conducted in rare circumstances to assist determine a genetic issue that causes apo B overproduction or underproduction.

What do my Apolipoprotein A1 and B test results mean?

Low apo A-I levels are linked to low HDL levels and slowed elimination of excess cholesterol from the body. Low levels of apo A-I, as well as high levels of apo B, are linked to a higher risk of cardiovascular disease.

Deficiencies in apo A-I are caused by a number of hereditary diseases. Abnormal lipid levels, notably excessive amounts of low-density lipoprotein, are common in people with certain illnesses. They frequently have a higher rate of atherosclerosis. Low apo A-I levels are caused by several genetic diseases.

Raised apo B levels are linked to elevated LDL-C and non-HDL-C levels, and are linked to an increased risk of cardiovascular disease. Elevations may be caused by a high-fat diet and/or a reduction in LDL clearance from the blood.

A direct cause of abnormal apo B levels is some hereditary diseases. Familial combined hyperlipidemia, for example, is an inherited condition that causes excessive cholesterol and triglyceride levels in the blood. Apolipoprotein B deficiency, also known as Bassen-Kornzweig syndrome, is a relatively rare hereditary disorder that results in unusually low amounts of apo B.

A variety of underlying diseases and other factors might result in abnormal apo B levels.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: Apolipoprotein B is a blood test that measures that amount of Apolipoprotein B in the blood’s serum. This test is used to assess cardiovascular risk.

Also Known As: Apo B Test, Apolipoprotein B-100 Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is an Apolipoprotein B test ordered?

Apolipoprotein A-I and B, as well as other lipid tests, may be ordered as part of a screening to identify a person's risk of cardiovascular disease.

Apo B is a protein that plays a role in lipid metabolism and is the major protein component of lipoproteins including VLDL and LDL, popularly known as "bad cholesterol." Apo B concentrations are similar to LDL-C concentrations.

What does an Apolipoprotein B blood test check for?

Lipids are transported throughout the bloodstream by apolipoproteins, which mix with them. Lipoproteins are held together by apolipoproteins, which protect the water-repellent lipids at their core.

Lipoproteins are cholesterol or triglyceride-rich proteins that transport lipids throughout the body for cell absorption. HDL, on the other hand, is like an empty cab. It travels to the tissues to collect excess cholesterol before returning it to the liver. Cholesterol is either recycled for future use or eliminated in bile in the liver. The only mechanism for cells to get rid of excess cholesterol is by HDL reverse transport. It protects the arteries and, if enough HDL is present, it can even reverse the formation of fatty plaques, which are deposits caused by atherosclerosis and can contribute to cardiovascular disease.

Chylomicrons are lipoprotein particles that transport dietary fats from the digestive system to tissue, primarily the liver, via the bloodstream. These dietary lipids are repackaged in the liver and combined with apo B-100 to create triglyceride-rich VLDL. This combo is similar to a taxi with a full load of passengers and apo B-100 as the driver. The taxi moves from place to place in the bloodstream, releasing one passenger at a time.

Triglycerides are removed from VLDL by an enzyme called lipoprotein lipase, which produces intermediate density lipoproteins first, then LDL. VLDL contains one molecule of apo B-100, which is kept as VLDL loses triglycerides and shrinks to become the cholesterol-rich LDL. Apo B-100 is detected by receptors on the surface of many different types of cells in the body. The absorption of cholesterol into cells is aided by these receptors.

LDL and apo B-100 transport cholesterol that is essential for cell membrane integrity, sex hormone generation, and steroid production. Excess LDL, on the other hand, can cause fatty deposits in artery walls, as well as blood vessel hardening and scarring. Atherosclerosis is a condition in which fatty deposits restrict blood arteries. The risk of a heart attack increases as the atherosclerotic process progresses.

LDL-C levels, which are typically ordered as part of a lipid profile, tend to mimic Apo B-100 levels. Many experts believe that apo B levels will eventually show to be a more accurate predictor of CVD risk than LDL-C. Others disagree, believing that vitamin B is only a modestly superior choice and that it should not be used on a regular basis. The clinical utility of apo B, as well as other developing cardiac risk markers including apo A-I, Lp(a), and hs-CRP, is still unknown.

Lab tests often ordered with an Apolipoprotein B test:

  • Apolipoprotein A1
  • Cholesterol Total
  • HDL Cholesterol
  • LDL Cholesterol
  • Triglycerides
  • Lipid Panel
  • Lipoprotein (a)
  • Homocysteine
  • hs-CRP
  • Lipoprotein Fractionation, Ion Mobility

Conditions where an Apolipoprotein B test is recommended:

  • Cardiovascular Disease
  • Heart Attack
  • Stroke
  • Congestive Heart Failure
  • Angina

How does my health care provider use an Apolipoprotein B test?

An apo B/apo A-I ratio can be determined by ordering both an apo A-I and an apo B test. To assess the risk of developing CVD, this ratio is sometimes used instead of the total cholesterol/HDL ratio.

As an alternative to non-HDL-C, Apo B levels may be ordered to assess the success of lipid treatment.

An apo B test may be conducted in rare circumstances to assist determine a genetic issue that causes apo B overproduction or underproduction.

What do my Apolipoprotein B test results mean?

Raised apo B levels are linked to elevated LDL-C and non-HDL-C levels, and are linked to an increased risk of cardiovascular disease. Elevations may be caused by a high-fat diet and/or a reduction in LDL clearance from the blood.

A direct cause of abnormal apo B levels is some hereditary diseases. Familial combined hyperlipidemia, for example, is an inherited condition that causes excessive cholesterol and triglyceride levels in the blood. Apolipoprotein B deficiency, also known as Bassen-Kornzweig syndrome, is a relatively rare hereditary disorder that results in unusually low amounts of apo B.

A variety of underlying diseases and other factors might result in abnormal apo B levels.

Is apoB a heart disease risk factor? 
The markers of particle number, apoB, or LDL particle number were better at predicting the risk of heart disease than LDL-C.

There are two major forms of Apolipoprotein B, B-100 and B-48. B-100, synthesized in the liver, is the major protein in VLDL, IDL, and LDL cholesterol. B-48, synthesized in the intestines, is essential for the assembly and secretion of chylomicrons. Patients with increased concentrations of Apolipoprotein B are at increased risk of atherosclerosis.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Most Popular

Description: A C-peptide test is a test that will measure the amount of C-peptide, a short amino acid chain, in the blood. This test can be used to determine if the beta cells in the pancreas are producing enough insulin. It can also be used to evaluate the reason for low blood glucose.

Also Known As: Insulin C-Peptide Test, Connecting Peptide Insulin Test, Proinsulin C-peptide test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: Fasting is required.

When is a C-Peptide test ordered?

When a person is initially diagnosed with type 1 diabetes, C-peptide levels may be ordered as part of a "residual beta cell function" study.

When a person has type 2 diabetes, a health practitioner may request the test on a regular basis to track the state of their beta cells and insulin production over time and assess whether or not insulin injections are needed.

When there is reported acute or recurring low blood glucose and/or excess insulin is suspected, C-peptide levels can be measured.

A C-peptide test may be conducted on a regular basis after a person has been diagnosed with an insulinoma to assess treatment effectiveness and detect tumor recurrence.

When a person's pancreas has been removed or has had pancreas islet cell transplants, C-peptide levels may be tracked over time.

What does a C-Peptide blood test check for?

C-peptide is a chemical made up of a short chain of amino acids that is released into the bloodstream as a byproduct of the pancreas producing insulin. This test determines how much C-peptide is present in a blood or urine sample.

Proinsulin, a physiologically inactive molecule, splits apart in the pancreas, within specialized cells called beta cells, to generate one molecule of C-peptide and one molecule of insulin. Insulin is necessary on a regular basis for the transport of glucose into the body's cells. When insulin is needed and released into the bloodstream in reaction to elevated glucose levels, equal amounts of C-peptide are also released. C-peptide can be used as a measure of insulin production because it is produced at the same rate as insulin.

C-peptide testing, in instance, can be used to assess the body's insulin production and distinguish it from insulin that is not produced by the body but is given as diabetes medication and hence does not generate C-peptide. This test can be done in conjunction with a blood test for insulin.

Lab tests often ordered with a C-Peptide test:

  • Insulin
  • Glucose

Conditions where a C-Peptide test is recommended:

  • Diabetes
  • Kidney Disease
  • Liver Disease
  • Insulin Resistance
  • Metabolic Syndrome

How does my health care provider use a C-Peptide test?

C-peptide testing can be used for a variety of reasons. When proinsulin breaks into one molecule of C-peptide and one molecule of insulin, C-peptide is created by the beta cells in the pancreas. Insulin is a hormone that allows the body to use glucose as its primary energy source. C-peptide is a helpful measure of insulin production since it is produced at the same rate as insulin.

A C-peptide test is not used to diagnose diabetes; however, when a person is newly diagnosed with diabetes, it may be ordered alone or in conjunction with an insulin level to evaluate how much insulin the pancreas is currently making.

The body becomes resistant to the effects of insulin in type 2 diabetes, so it compensates by manufacturing and releasing more insulin, which can destroy beta cells. Oral medications are commonly used to help type 2 diabetics stimulate their bodies to produce more insulin and/or make their cells more receptive to the insulin that is already produced. Type 2 diabetics may eventually produce very little insulin as a result of beta cell loss, necessitating insulin injections. Because any insulin produced by the body is reflected in the C-peptide level, the C-peptide test can be used to track beta cell activity and capability over time and to assist a health care provider in deciding when to start insulin treatment.

Antibodies to insulin can develop in people on insulin therapy, independent of the source of the insulin. These often interfere with insulin assays, making it difficult to assess endogenous insulin production directly. C-peptide measurement is a good alternative to insulin testing in certain situations.

C-peptide levels can also be utilized in conjunction with insulin and glucose levels to help determine the source of hypoglycemia and track its therapy. Excessive insulin supplementation, alcohol intake, hereditary liver enzyme deficits, liver or kidney illness, or insulinomas can all cause hypoglycemia symptoms.

Insulinomas can be diagnosed with the C-peptide test. These are tumors of the pancreas' islet cells, which can produce excessive levels of insulin and C-peptide, resulting in abrupt hypoglycemia. C-peptide testing can be used to track how well insulinoma treatment is working and to detect recurrence.

A C-peptide test may be performed to help evaluate a person who has been diagnosed with metabolic syndrome, a group of risk factors that includes abdominal obesity, high blood pressure, and elevated blood glucose and/or insulin resistance.

C-peptide levels are occasionally used to verify the effectiveness of treatment and the procedure's sustained success after someone has had his pancreatic removed or has had pancreas islet cell transplants to restore the ability to manufacture insulin.

What do my C-Peptide test results mean?

A high level of C-peptide implies that endogenous insulin synthesis is high. This could be a result of a high blood glucose level brought on by carbohydrate consumption and/or insulin resistance. Insulinomas, low blood potassium, Cushing syndrome, and renal failure are all linked to a high level of C-peptide.

C-peptide levels that are decreasing in someone with an insulinoma suggest a response to treatment when used for monitoring; levels that are increasing may indicate a tumor recurrence when used for monitoring.

A low amount of C-peptide is linked to a reduction in insulin synthesis. This can happen when the beta cells generate insufficient insulin, as in diabetes, or when their production is reduced by exogenous insulin administration.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: A hs-CRP or High Sensitivity C-Reactive Protein test is a blood test used to accurately detect lower concentrations of the protein C-Reactive Protein. This test is used to evaluate your risk of cardiovascular and heart disease and to check for inflammation and many other issues.

Also Known As: hsCRP Test, Cardiac CRP Test, high sensitivity C-reactive protein Test, CRP Test for heart disease.

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is a hs-CRP test ordered?

There is currently no consensus on when to get an hs-CRP test. It may be beneficial for treatment purposes to order hs-CRP for those that have kidney disease, diabetes or inflammatory disorders.

It's possible that hs-CRP will be tested again to confirm that a person has persistently low levels of inflammation.

What does a hs-CRP blood test check for?

C-reactive protein is a protein found in the blood that rises in response to infection and inflammation, as well as after trauma, surgery, or a heart attack. As a result, it's one of numerous proteins referred to as acute phase reactants. The high-sensitivity CRP test detects low levels of inflammation in the blood, which are linked to an increased risk of developing cardiovascular disease.

According to the American Heart Association, CVD kills more people in the United States each year than any other cause. A number of risk factors have been related to the development of CVD, including family history, high cholesterol, high blood pressure, being overweight or diabetic, however a considerable number of people with few or no recognized risk factors will also acquire CVD. This has prompted researchers to investigate for new risk variables that could be causing CVD or could be used to identify lifestyle modifications and/or treatments that could lower a person's risk.

High-sensitivity CRP is one of an increasing number of cardiac risk markers that may be used to assess an individual's risk. According to certain research, monitoring CRP with a highly sensitive assay can assist identify the risk level for CVD in persons who appear to be healthy. CRP levels at the higher end of the reference range can be measured with this more sensitive test. Even when cholesterol levels are within an acceptable range, these normal but slightly elevated levels of CRP in otherwise healthy persons might indicate the future risk of a heart attack, sudden cardiac death, stroke, and peripheral artery disease.

Lab tests often ordered with a hs-CRP test:

  • Complete Blood Count
  • Lipid Panel
  • Comprehensive Metabolic Panel
  • Lp-Pla2
  • Glucose

Conditions where a hs-CRP test is recommended:

  • Heart Attack
  • Heart Disease
  • Cardiovascular Disease
  • Stroke

How does my health care provider use a hs-CRP test?

A test for high-sensitivity C-reactive protein can be used to assess a person's risk of cardiovascular disease. It can be used in conjunction with a lipid profile or other cardiac risk markers, such as the lipoprotein-associated phospholipase A2 test, to provide further information regarding the risk of heart disease.

CRP is a protein that rises in the bloodstream as a result of inflammation. A continuous low level of inflammation, according to studies, plays a crucial role in atherosclerosis, the narrowing of blood vessels caused by the build-up of cholesterol and other lipids, which is typically linked to CVD. The hs-CRP test successfully detects low levels of C-reactive protein, indicating low but chronic inflammation, and so aids in predicting a person's risk of developing CVD.

Some specialists believe that high-sensitivity CRP is a good test for assessing CVD, heart attacks, and stroke risk, and that it can help in the evaluation process before a person gets one of these health problems. Some experts believe that combining a good marker for inflammation, such as hs-CRP, with a lipid profile is the best way to predict risk. This test has been recommended by several organizations for persons who are at a moderate risk of having a heart attack in the following ten years.

What does my hs-CRP test result mean?

Even when cholesterol levels are within an acceptable range, high levels of hs-CRP in otherwise healthy people have been found to predict an elevated risk of future heart attacks, strokes, sudden cardiac death, and/or peripheral arterial disease.

Higher hs-CRP concentrations indicate a higher risk of cardiovascular disease, while lower values indicate a lower risk. Individuals with hs-CRP values at the high end of the normal range are 1.5 to 4 times more likely than those with low levels of hs-CRP to have a heart attack.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: Apolipoprotein B is a blood test that measures that amount of Apolipoprotein B in the blood’s serum. This test is used to assess cardiovascular risk.

Also Known As: Apo B Test, Apolipoprotein B-100 Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is an Apolipoprotein B test ordered?

Apolipoprotein A-I and B, as well as other lipid tests, may be ordered as part of a screening to identify a person's risk of cardiovascular disease.

Apo B is a protein that plays a role in lipid metabolism and is the major protein component of lipoproteins including VLDL and LDL, popularly known as "bad cholesterol." Apo B concentrations are similar to LDL-C concentrations.

What does an Apolipoprotein B blood test check for?

Lipids are transported throughout the bloodstream by apolipoproteins, which mix with them. Lipoproteins are held together by apolipoproteins, which protect the water-repellent lipids at their core.

Lipoproteins are cholesterol or triglyceride-rich proteins that transport lipids throughout the body for cell absorption. HDL, on the other hand, is like an empty cab. It travels to the tissues to collect excess cholesterol before returning it to the liver. Cholesterol is either recycled for future use or eliminated in bile in the liver. The only mechanism for cells to get rid of excess cholesterol is by HDL reverse transport. It protects the arteries and, if enough HDL is present, it can even reverse the formation of fatty plaques, which are deposits caused by atherosclerosis and can contribute to cardiovascular disease.

Chylomicrons are lipoprotein particles that transport dietary fats from the digestive system to tissue, primarily the liver, via the bloodstream. These dietary lipids are repackaged in the liver and combined with apo B-100 to create triglyceride-rich VLDL. This combo is similar to a taxi with a full load of passengers and apo B-100 as the driver. The taxi moves from place to place in the bloodstream, releasing one passenger at a time.

Triglycerides are removed from VLDL by an enzyme called lipoprotein lipase, which produces intermediate density lipoproteins first, then LDL. VLDL contains one molecule of apo B-100, which is kept as VLDL loses triglycerides and shrinks to become the cholesterol-rich LDL. Apo B-100 is detected by receptors on the surface of many different types of cells in the body. The absorption of cholesterol into cells is aided by these receptors.

LDL and apo B-100 transport cholesterol that is essential for cell membrane integrity, sex hormone generation, and steroid production. Excess LDL, on the other hand, can cause fatty deposits in artery walls, as well as blood vessel hardening and scarring. Atherosclerosis is a condition in which fatty deposits restrict blood arteries. The risk of a heart attack increases as the atherosclerotic process progresses.

LDL-C levels, which are typically ordered as part of a lipid profile, tend to mimic Apo B-100 levels. Many experts believe that apo B levels will eventually show to be a more accurate predictor of CVD risk than LDL-C. Others disagree, believing that vitamin B is only a modestly superior choice and that it should not be used on a regular basis. The clinical utility of apo B, as well as other developing cardiac risk markers including apo A-I, Lp(a), and hs-CRP, is still unknown.

Lab tests often ordered with an Apolipoprotein B test:

  • Apolipoprotein A1
  • Cholesterol Total
  • HDL Cholesterol
  • LDL Cholesterol
  • Triglycerides
  • Lipid Panel
  • Lipoprotein (a)
  • Homocysteine
  • hs-CRP
  • Lipoprotein Fractionation, Ion Mobility

Conditions where an Apolipoprotein B test is recommended:

  • Cardiovascular Disease
  • Heart Attack
  • Stroke
  • Congestive Heart Failure
  • Angina

How does my health care provider use an Apolipoprotein B test?

An apo B/apo A-I ratio can be determined by ordering both an apo A-I and an apo B test. To assess the risk of developing CVD, this ratio is sometimes used instead of the total cholesterol/HDL ratio.

As an alternative to non-HDL-C, Apo B levels may be ordered to assess the success of lipid treatment.

An apo B test may be conducted in rare circumstances to assist determine a genetic issue that causes apo B overproduction or underproduction.

What do my Apolipoprotein B test results mean?

Raised apo B levels are linked to elevated LDL-C and non-HDL-C levels, and are linked to an increased risk of cardiovascular disease. Elevations may be caused by a high-fat diet and/or a reduction in LDL clearance from the blood.

A direct cause of abnormal apo B levels is some hereditary diseases. Familial combined hyperlipidemia, for example, is an inherited condition that causes excessive cholesterol and triglyceride levels in the blood. Apolipoprotein B deficiency, also known as Bassen-Kornzweig syndrome, is a relatively rare hereditary disorder that results in unusually low amounts of apo B.

A variety of underlying diseases and other factors might result in abnormal apo B levels.

Is apoB a heart disease risk factor? 
The markers of particle number, apoB, or LDL particle number were better at predicting the risk of heart disease than LDL-C.

There are two major forms of Apolipoprotein B, B-100 and B-48. B-100, synthesized in the liver, is the major protein in VLDL, IDL, and LDL cholesterol. B-48, synthesized in the intestines, is essential for the assembly and secretion of chylomicrons. Patients with increased concentrations of Apolipoprotein B are at increased risk of atherosclerosis.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: A Lipid Panel is a blood test that measures your cholesterol levels to evaluate your risk of cardiovascular disease. 

Also Known As: Lipid Profile Test, Lipid Test, Cholesterol Profile Test, Cholesterol Panel Test, Cholesterol Test, Coronary Risk Panel Test, lipid blood test 

Collection Method: Blood Draw 

Specimen Type: Serum 

Test Preparation: Patient should be fasting 9-12 hours prior to collection.

When is a Lipid Panel test ordered?  

A fasting lipid profile should be done about every five years in healthy persons who have no additional risk factors for heart disease. A single total cholesterol test, rather than a complete lipid profile, may be used for initial screening. If the screening cholesterol test result is high, a lipid profile will almost certainly be performed. 

More regular testing with a full lipid profile is indicated if other risk factors are present or if earlier testing revealed a high cholesterol level. 

Other risk factors, in addition to high LDL cholesterol, include: 

  • Smoking 
  • Obesity or being overweight 
  • Unhealthy eating habits 
  • Not getting enough exercise and being physically inactive 
  • Older age 
  • Having hypertension 
  • Premature heart disease in the family 
  • Having experienced a heart attack or having pre-existing heart disease 

Diabetes or pre-diabetes is a condition in which a person has High HDL is a "negative risk factor," and its existence permits one risk factor to be removed from the total. 

The American Academy of Pediatrics recommends routine lipid testing for children and young adults. Children and teenagers who are at a higher risk of developing heart disease as adults should be screened with a lipid profile earlier and more frequently. A family history of heart disease or health problems such as diabetes, high blood pressure, or being overweight are some of the risk factors, which are comparable to those in adults. According to the American Academy of Pediatrics, high-risk children should be examined with a fasting lipid profile between the ages of 2 and 8. 

A lipid profile can also be done at regular intervals to assess the effectiveness of cholesterol-lowering lifestyle changes like diet and exercise, as well as pharmacological therapy like statins. 

What does a Lipid Panel blood test check for? 

Lipids are a class of fats and fat-like compounds that are essential components of cells and energy sources. The level of certain lipids in the blood is measured by a lipid profile. 

Lipoprotein particles transport two key lipids, cholesterol, and triglycerides, through the bloodstream. Protein, cholesterol, triglyceride, and phospholipid molecules are all present in each particle. High-density lipoproteins, low-density lipoproteins, and very low-density lipoproteins are the three types of particles assessed with a lipid profile. 

It's critical to keep track of and maintain optimal levels of these lipids in order to stay healthy. While the body creates the cholesterol required for normal function, some cholesterol is obtained from the diet. A high amount of cholesterol in the blood can be caused by eating too many foods high in saturated fats and trans fats or having a hereditary tendency. The excess cholesterol may form plaques on the inside walls of blood vessels. Plaques can constrict or block blood channel openings, causing artery hardening and raising the risk of a variety of health problems, including heart disease and stroke. Although the explanation for this is unknown, a high level of triglycerides in the blood is linked to an increased risk of developing cardiovascular disease. 

A lipid profile consists of the following elements: 

  • Cholesterol total 
  • HDL Cholesterol -?commonly referred to as "good cholesterol" since it eliminates excess cholesterol from the body and transports it to the liver for elimination. 
  • LDL Cholesterol -?commonly referred to as "bad cholesterol" because it deposits excess cholesterol in the walls of blood arteries, contributing to atherosclerosis. 
  • Triglycerides 

Lab tests often ordered with a Lipid Panel test:

  • CBC (Blood Count Test) with Smear Review
  • Comprehensive Metabolic Panel
  • Direct LDL
  • VLDL
  • Lp-PLA2
  • Apolipoprotein A1
  • Apolipoprotein B
  • Lipoprotein (a)
  • Lipoprotein Fractionation Ion Mobility (LDL Particle Testing)

Conditions where a Lipid Panel test is recommended:

  • Hypertension
  • Cardiovascular Disease
  • Heart Disease
  • Stroke

Commonly Asked Questions: 

How does my health care provider use a Lipid Panel test? 

The lipid profile is used as part of a cardiac risk assessment to help determine an individual's risk of heart disease and, if there is a borderline or high risk, to help make treatment options. 

Lipids are a class of fats and fat-like compounds that are essential components of cells and energy sources. It's critical to keep track of and maintain optimal levels of these lipids in order to stay healthy. 

To design a therapy and follow-up strategy, the results of the lipid profile are combined with other recognized risk factors for heart disease. Treatment options may include lifestyle changes such as diet and exercise, as well as lipid-lowering drugs such as statins, depending on the results and other risk factors. 

A normal lipid profile test measures the following elements: 

  • Total cholesterol is a test that determines how much cholesterol is present in all lipoprotein particles. 

  • HDL Cholesterol — measures hdl cholesterol in particles, sometimes referred to as "good cholesterol" since it eliminates excess cholesterol and transports it to the liver for elimination. 

  • LDL Cholesterol – estimates the cholesterol in LDL particles; sometimes known as "bad cholesterol" since it deposits excess cholesterol in blood vessel walls, contributing to atherosclerosis. The amount of LDL Cholesterol is usually estimated using the total cholesterol, HDL Cholesterol, and triglycerides readings. 

  • Triglycerides – triglycerides are measured in all lipoprotein particles, with the highest concentration in very-low-density lipoproteins. 

  • As part of the lipid profile, several extra information may be presented. The results of the above-mentioned tests are used to determine these parameters. 

  • VLDL Cholesterol — derived using triglycerides/5; this calculation is based on the typical VLDL particle composition. 

  • Non-HDL Cholesterol - the result of subtracting total cholesterol from HDL Cholesterol. 

  • Cholesterol/HDL ratio — total cholesterol to HDL Cholesterol ratio computed. 

An expanded profile may include the amount and concentration of low-density lipoprotein particles. Rather than assessing the amount of LDL cholesterol, this test counts the number of LDL particles. This figure is thought to more accurately reflect the risk of heart disease in some persons. 

What do my Lipid Panel test results mean? 

Healthy lipid levels, in general, aid in the maintenance of a healthy heart and reduce the risk of heart attack or stroke. A health practitioner would analyze the results of each component of a lipid profile, as well as other risk factors, to assess a person's total risk of coronary heart disease, if therapy is required, and, if so, which treatment will best serve to reduce the person's risk of heart disease. 

The Adult Treatment Panel III of the National Cholesterol Education Program published guidelines for measuring lipid levels and selecting treatment in 2002. The American College of Cardiology and the American Heart Association announced updated cholesterol therapy guidelines in 2013 to minimize the risk of cardiovascular disease in adults. These guidelines suggest a different treatment method than the NCEP guidelines. Cholesterol-lowering medications are now chosen based on the 10-year risk of atherosclerotic cardiovascular disease and other criteria, rather than on LDL Cholesterol or non-HDL Cholesterol objectives. 

The revised guidelines include an evidence-based risk calculator for ASCVD that may be used to identify people who are most likely to benefit from treatment. It's for adults between the ages of 40 and 79 who don't have a heart condition. The computation takes into account a number of characteristics, including age, gender, race, total cholesterol, HDL Cholesterol, blood pressure, diabetes, and smoking habits. The new guidelines also suggest comparing therapeutic response to LDL Cholesterol baseline readings, with decrease criteria varying depending on the degree of lipid-lowering medication therapy. 

Unhealthy lipid levels, as well as the presence of additional risk factors like age, family history, cigarette smoking, diabetes, and high blood pressure, may indicate that the person being examined needs to be treated. 

The NCEP Adult Treatment Panel III guidelines specify target LDL cholesterol levels based on the findings of lipid testing and these other main risk factors. Individuals with LDL Cholesterol levels over the target limits will be treated, according to the guidelines. 

According to the American Academy of Pediatrics, screening youths with risk factors for heart disease with a full, fasting lipid panel is advised. Fasting is not required prior to lipid screening in children who do not have any risk factors. For non-fasting lipid screening, non-high-density lipoprotein cholesterol is the preferred test. Non HDL Cholesterol is computed by subtracting total cholesterol and HDL Cholesterol from total cholesterol and HDL Cholesterol. 

Is there anything else I should know? 

The measurement of triglycerides in people who haven't fasted is gaining popularity. Because most of the day, blood lipid levels reflect post-meal levels rather than fasting levels, a non-fasting sample may be more representative of the "usual" circulating level of triglyceride. However, because it is still unclear how to interpret non-fasting levels for assessing risk, the current recommendations for fasting before lipid tests remain unchanged. 

A fasting lipid profile is usually included in a routine cardiac risk assessment. In addition, research into the utility of additional non-traditional cardiac risk markers, such as Lp-PLA2, is ongoing. A health care provider may use one or more of these markers to help determine a person's risk, but there is no consensus on how to use them and they are not widely available. 

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: Lp(a) is a test that is measuring for the levels of Lipoprotein in the blood’s serum. This test can be used to evaluate the risk for cardiovascular disease.

Also Known As: Lipoprotein A Test, lipoprotein little a Test, lpa test, lp(a) test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is a Lipoprotein (a) test ordered?

Lp(a) is not a lipid profile that is commonly ordered. When an individual has a family history of heart disease at a young age that is not caused by high LDL or low HDL, it may be done along with other lipid testing.

This test may also be ordered by some doctors when:

  • A person has a history of heart or vascular disease, particularly if their lipid levels are normal or very slightly raised.
  • Someone is born with a genetic susceptibility to high cholesterol.
  • A individual who has had a stroke or a heart attack but whose lipids are normal or only slightly increased.

What does a Lipoprotein (a) blood test check for?

Lipoprotein (a), often known as Lp(a), is a lipoprotein that transports cholesterol through the bloodstream. It has a single apolipoprotein B protein, as well as cholesterol and other lipids, and is similar to low-density lipoprotein. This test evaluates a person's risk of getting cardiovascular disease by measuring the amount of Lp(a) in their blood.

Lp(a) is a risk factor for CVD, same as LDL. A person's level of Lp(a) is genetically determined and remains generally stable throughout their lives. Because a high level of Lp(a) is expected to contribute to a person's overall risk of CVD, this test could be useful as a CVD risk marker.

The protein portion of Lipoprotein (a) is made up of the following components:

  • Apolipoprotein B, a lipid-metabolizing protein that is the major protein ingredient of lipoproteins like LDL and VLDL
  • Apo (a), a second protein that is connected to Apo B. Apolipoprotein(a) is a protein with a unique structure that is considered to prevent clots from breaking down naturally. The apolipoprotein(a) portion of Lp(a) varies in size from person to person, with Caucasians having a smaller apolipoprotein(a) portion than those of African heritage. Although the importance of size variation in contributing to CVD risk is debatable, there is some evidence that smaller size increases risk. However, most Lipoprotein(a) assays don’t assess the size of Apo(a). Only Lipoprotein(a) levels in the blood are measured and reported.

Because roughly half of those who have heart attacks have normal cholesterol levels, scientists have looked for additional factors that may impact heart disease. Lp(a) is assumed to be one of these factors. Lp(a) has two possible contributions. For starters, because Lp(a) can stimulate the uptake of LDL into blood channel walls, it may aid in the formation of atherosclerotic plaque on blood vessel walls. Second, because apo(a) has a structure that inhibits clot-dissolving enzymes, Lp(a) may enhance clot buildup in the arteries. Lp(a) may be more atherogenic than LDL for these reasons.

Lab tests often ordered with a Lipoprotein (a) test:

  • Lipid Panel
  • Homocysteine
  • Hs-CRP
  • Apolipoprotein A1
  • Apolipoprotein B

Conditions where a Lipoprotein (a) test is recommended:

  • Heart Disease
  • Cardiovascular Disease
  • Heart Attack
  • Stroke

How does my health care provider use a Lipoprotein (a) test?

The Lp(a) test is used to determine whether an elevated level of lipoprotein (a) is a risk factor for cardiovascular disease. The test can be used in conjunction with a standard lipid profile to provide you further information about your CVD risk.

The Lp(a) level is determined by genetics and remains largely stable throughout a person's life. It is not the objective of therapy because it is usually unaffected by lifestyle modifications or most medicines. Instead, when Lp(a) is high, the presence of this additional risk factor may indicate that other, more manageable risk factors, such as an elevated low-density lipoprotein, require more urgent treatment.

What does my Lipoprotein (a) test result mean?

A high Lp(a) level raises the risk of cardiovascular disease and cerebral vascular disease. People with a normal lipid profile can develop high Lp(a). Lp(a) levels that are high are thought to increase the risk of heart disease independently of other lipids.

Lp(a) levels are genetically set and are difficult to adjust with lifestyle modifications or medicines. However, some non-genetic diseases can result in an increase in Lp (a). Estrogen depletion, hypercholesterolemia, hypothyroidism, diabetes, chronic renal failure, and nephrotic syndrome are examples of these conditions.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: Ion Mobility Lipoprotein Fractionation is a test that uses a gas-phase technology to separate the lipid particles by size. As each particle is separated, they are counted.

Also Known As: LDL Particle Testing, LDL-P Test, LDL Subclass Test, sdLDL Test, LDL Fractionations Test, LDL Particle Size Test, LDL Particle Number Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: Fasting preferred, but not required

When is a Lipoprotein Fractionation test ordered?

When someone has a personal or family history of early cardiovascular disease, this testing may be ordered as part of an overall evaluation of cardiac risk, especially if the person does not have typical cardiac risk factors like high cholesterol, high LDL cholesterol, high triglyceride, low HDL cholesterol, smoking, obesity, inactivity, diabetes, and/or hypertension.

When a person with elevated LDL-P and/or a high proportion of tiny, dense LDL particles has undertaken cholesterol-lowering treatment or lifestyle adjustments, the healthcare practitioner may conduct LDL lipoprotein subfraction testing, as well as other lipid tests, to assess treatment success.

Although LDL-P is not typically suggested as a screening test, some healthcare practitioners are using it in conjunction with a battery of other cardiac risk tests to evaluate a person's overall risk of getting CVD.

What does a Lipoprotein Fractionation blood test check for?

Low-density lipoproteins are lipid-transporting particles that travel throughout the body. Protein, cholesterol, triglyceride, and phospholipid molecules are all present in each particle. As they move through the bloodstream, their makeup changes. Lipoprotein particles range in size from large and fluffy to small and dense, depending on which molecules are eliminated and which are added. The relative amounts of particles with different characteristics in the blood are determined by LDL particle testing. Subfractionation testing is a term used to describe this process.

Traditional lipid testing determines the amount of LDL cholesterol in the blood but does not assess the number of LDL particles. Increased numbers of small, dense LDL particles have been linked to inflammation and are more likely to produce atherosclerosis than fewer light, fluffy LDL particles, according to some research. Researchers believe that the existence of an elevated quantity of sdLDL could be one of the reasons why some people have heart attacks while having relatively low total and LDL cholesterol levels.

The number of sdLDL particles in a person's blood is determined in part by genetics, in part by sex, and in part by lifestyle and overall health. Increased levels of sdLDL are linked to certain diseases and disorders, like as diabetes and hypertension.

By examining a person's triglyceride and high-density lipoprotein cholesterol levels, it is usually able to estimate whether they have a high amount of sdLDL particles. Typically, these tests are done as part of a lipid profile. People with high triglycerides and low HDL-C have higher levels of sdLDL. More sdLDL is connected with a triglyceride level greater than 120 mg/dL and an HDL-C level less than 40 mg/dL in men and less than 50 mg/dL in women.

Other lipoprotein particles, such as HDL and VLDL, can also be subfractionated, however these tests are generally utilized in research settings and are not discussed on this page.

Lab tests often ordered with a Lipoprotein Fractionation test:

  • Lipid Panel
  • HDL Cholesterol
  • LDL Cholesterol
  • Direct LDL
  • Apolipoprotein A-1
  • Apolipoprotein B
  • Lipoprotein (a)
  • Triglycerides
  • Homocysteine
  • Hs-CRP
  • VAP

Conditions where a Lipoprotein Fractionation test is recommended:

  • Cardiovascular Disease
  • Heart Disease

How does my health care provider use a Lipoprotein Fractionation test?

Low-density lipoprotein particle testing determines the number, size, density, and/or electrical charge of LDL particles. It may be useful in determining cardiac risk in patients with a personal or family history of heart disease at a young age, particularly if their total cholesterol and LDL cholesterol levels are not markedly increased. LDL subfraction testing is usually done in conjunction with or after a lipid profile.

While the LDL-C test is a good predictor of cardiovascular disease risk for many people, research has indicated that certain persons with healthy LDL-C levels nonetheless have an increased risk of CVD. Similarly, even if their LDL-C is at a safe level, people with chronic diseases like diabetes may be at higher risk. The quantity of LDL particles and/or their size has been recommended as an additional factor to consider when assessing CVD risk in these populations. Lipoprotein subfraction testing may be done in these situations to further assess a person's CVD risk.

LDL-P is sometimes requested to see how well a treatment is working at reducing the quantity of tiny, dense LDL particles.

LDL subfraction testing has been employed in clinical settings, although VLDL or HDL subfraction testing is primarily used in research. This is because LDL cholesterol has been established as the key risk factor for heart disease, and LDL assessment has received increased attention in research and development.

What do my Lipoprotein Fractionation test results mean?

The method and reporting format utilized in an LDL-P test, as well as the person's total cholesterol, LDL-C, VLDL, and/or HDL cholesterol, are all reflected in the results. Because different methods divide subclasses based on different physical qualities, results may not be immediately comparable from one method to the next or from one laboratory to the next.

Usually, the result is evaluated in context of a lipid profile and the risk it implies:

  • If a person has a high number of mostly tiny, dense LDL and an elevated LDL-P, this result will enhance the person's risk of cardiovascular disease beyond the risk associated with total LDL.
  • If a person only has large, fluffy LDL and a low LDL-P, this discovery will not put them at any greater risk.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: A CBC or Complete Blood Count with Differential and Platelets test is a blood test that measures many important features of your blood’s red and white blood cells and platelets. A Complete Blood Count can be used to evaluate your overall health and detect a wide variety of conditions such as infection, anemia, and leukemia. It also looks at other important aspects of your blood health such as hemoglobin, which carries oxygen. 

Also Known As: CBC test, Complete Blood Count Test, Total Blood Count Test, CBC with Differential and Platelets test, Hemogram test  

Collection Method: Blood Draw 

Specimen Type: Whole Blood 

Test Preparation: No preparation required 

When is a Complete Blood Count test ordered?  

The complete blood count (CBC) is an extremely common test. When people go to the doctor for a standard checkup or blood work, they often get a CBC. Suppose a person is healthy and their results are within normal ranges. In that case, they may not need another CBC unless their health condition changes, or their healthcare professional believes it is necessary. 

When a person exhibits a variety of signs and symptoms that could be connected to blood cell abnormalities, a CBC may be done. A health practitioner may request a CBC to help diagnose and determine the severity of lethargy or weakness, as well as infection, inflammation, bruises, or bleeding. 

When a person is diagnosed with a disease that affects blood cells, a CBC is frequently done regularly to keep track of their progress. Similarly, if someone is being treated for a blood condition, a CBC may be performed on a regular basis to see if the treatment is working. 

Chemotherapy, for example, can influence the generation of cells in the bone marrow. Some drugs can lower WBC counts in the long run. To monitor various medication regimens, a CBC may be required on a regular basis. 

What does a Complete Blood Count test check for? 

The complete blood count (CBC) is a blood test that determines the number of cells in circulation. White blood cells (WBCs), red blood cells (RBCs), and platelets (PLTs) are three types of cells suspended in a fluid called plasma. They are largely created and matured in the bone marrow and are released into the bloodstream when needed under normal circumstances. 

A CBC is mainly performed with an automated machine that measures a variety of factors, including the number of cells present in a person's blood sample. The findings of a CBC can reveal not only the quantity of different cell types but also the physical properties of some of the cells. 

Significant differences in one or more blood cell populations may suggest the presence of one or more diseases. Other tests are frequently performed to assist in determining the reason for aberrant results. This frequently necessitates visual confirmation via a microscope examination of a blood smear. A skilled laboratory technician can assess the appearance and physical features of blood cells, such as size, shape, and color, and note any anomalies. Any extra information is taken note of and communicated to the healthcare provider. This information provides the health care provider with further information about the cause of abnormal CBC results. 

The CBC focuses on three different types of cells: 

WBCs (White Blood Cells) 

The body uses five different types of WBCs, also known as leukocytes, to keep itself healthy and battle infections and other types of harm. The five different leukocytes are eosinophiles, lymphocytes, neutrophiles, basophils, and monocytes. They are found in relatively steady numbers in the blood. Depending on what is going on in the body, these values may momentarily rise or fall. An infection, for example, can cause the body to manufacture more neutrophils in order to combat bacterial infection. The amount of eosinophils in the body may increase as a result of allergies. A viral infection may cause an increase in lymphocyte production. Abnormal (immature or mature) white cells multiply fast in certain illness situations, such as leukemia, raising the WBC count. 

RBCs (Red Blood Cells) 

The bone marrow produces red blood cells, also known as erythrocytes, which are transferred into the bloodstream after maturing. Hemoglobin, a protein that distributes oxygen throughout the body, is found in these cells. Because RBCs have a 120-day lifespan, the bone marrow must constantly manufacture new RBCs to replace those that have aged and disintegrated or have been lost due to hemorrhage. A variety of diseases, including those that cause severe bleeding, can alter the creation of new RBCs and their longevity. 

The CBC measures the number of RBCs and hemoglobin in the blood, as well as the proportion of RBCs in the blood (hematocrit), and if the RBC population appears to be normal. RBCs are generally homogeneous in size and shape, with only minor differences; however, considerable variances can arise in illnesses including vitamin B12 and folate inadequacy, iron deficiency, and a range of other ailments. Anemia occurs when the concentration of red blood cells and/or the amount of hemoglobin in the blood falls below normal, resulting in symptoms such as weariness and weakness. In a far smaller percentage of cases, there may be an excess of RBCs in the blood (erythrocytosis or polycythemia). This might obstruct the flow of blood through the tiny veins and arteries in extreme circumstances. 

Platelets 

Platelets, also known as thrombocytes, are small cell fragments that aid in the regular clotting of blood. A person with insufficient platelets is more likely to experience excessive bleeding and bruises. Excess platelets can induce excessive clotting or excessive bleeding if the platelets are not operating properly. The platelet count and size are determined by the CBC. 

Lab tests often ordered with a Complete Blood Count test: 

  • Reticulocytes
  • Iron and Total Iron Binding Capacity
  • Basic Metabolic Panel
  • Comprehensive Metabolic Panel
  • Lipid Panel
  • Vitamin B12 and Folate
  • Prothrombin with INR and Partial Thromboplastin Times
  • Sed Rate (ESR)
  • C-Reactive Protein
  • Epstein-Barr Virus
  • Von Willebrand Factor Antigen

Conditions where a Complete Blood Count test is recommended: 

  • Anemia
  • Aplastic Anemia
  • Iron Deficiency Anemia
  • Vitamin B12 and Folate Deficiency
  • Sickle Cell Anemia
  • Heart Disease
  • Thalassemia
  • Leukemia
  • Autoimmune Disorders
  • Cancer
  • Bleeding Disorders
  • Inflammation
  • Epstein-Barr Virus
  • Mononucleosis

Commonly Asked Questions: 

How does my health care provider use a Complete Blood Count test? 

The complete blood count (CBC) is a common, comprehensive screening test used to measure a person's overall health status.  

What do my Complete Blood Count results mean? 

A low Red Blood Cell Count, also known as anemia, could be due many different causes such as chronic bleeding, a bone marrow disorder, and nutritional deficiency just to name a few. A high Red Blood Cell Count, also known as polycythemia, could be due to several conditions including lung disease, dehydration, and smoking. Both Hemoglobin and Hematocrit tend to reflect Red Blood Cell Count results, so if your Red Blood Cell Count is low, your Hematocrit and Hemoglobin will likely also be low. Results should be discussed with your health care provider who can provide interpretation of your results and determine the appropriate next steps or lab tests to further investigate your health. 

What do my Differential results mean? 

A low White Blood Cell count or low WBC count, also known as leukopenia, could be due to a number of different disorders including autoimmune issues, severe infection, and lymphoma. A high White Blood Cell count, or high WBC count, also known as leukocytosis, can also be due to many different disorders including infection, leukemia, and inflammation. Abnormal levels in your White Blood Cell Count will be reflected in one or more of your different white blood cells. Knowing which white blood cell types are affected will help your healthcare provider narrow down the issue. Results should be discussed with your health care provider who can provide interpretation of your results and determine the appropriate next steps or lab tests to further investigate your health. 

What do my Platelet results mean? 

A low Platelet Count, also known as thrombocytopenia, could be due to a number of different disorders including autoimmune issues, viral infection, and leukemia. A high Platelet Count, also known as Thrombocytosis, can also be due to many different disorders including cancer, iron deficiency, and rheumatoid arthritis. Results should be discussed with your health care provider who can provide interpretation of your results and determine the appropriate next steps or lab tests to further investigate your health. 

NOTE: Only measurable biomarkers will be reported. Certain biomarkers do not appear in healthy individuals. 

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.

Reflex Parameters for Manual Slide Review
  Less than  Greater Than 
WBC  1.5 x 10^3  30.0 x 10^3 
Hemoglobin  7.0 g/dL  19.0 g/dL 
Hematocrit  None  75%
Platelet  100 x 10^3  800 x 10^3 
MCV  70 fL  115 fL 
MCH  22 pg  37 pg 
MCHC  29 g/dL  36.5 g/dL 
RBC  None  8.00 x 10^6 
RDW  None  21.5
Relative Neutrophil %  1% or ABNC <500  None 
Relative Lymphocyte %  1% 70%
Relative Monocyte %  None  25%
Eosinophil  None  35%
Basophil  None  3.50%
     
Platelet  <75 with no flags,
>100 and <130 with platelet clump flag present,
>1000 
Instrument Flags Variant lymphs, blasts,
immature neutrophils,  nRBC’s, abnormal platelets,
giant platelets, potential interference
     
The automated differential averages 6000+ cells. If none of the above parameters are met, the results are released without manual review.
CBC Reflex Pathway

Step 1 - The slide review is performed by qualified Laboratory staff and includes:

  • Confirmation of differential percentages
  • WBC and platelet estimates, when needed
  • Full review of RBC morphology
  • Comments for toxic changes, RBC inclusions, abnormal lymphs, and other
  • significant findings
  • If the differential percentages agree with the automated counts and no abnormal cells are seen, the automated differential is reported with appropriate comments

Step 2 - The slide review is performed by qualified Laboratory staff and includes: If any of the following are seen on the slide review, Laboratory staff will perform a manual differential:

  • Immature, abnormal, or toxic cells
  • nRBC’s
  • Disagreement with automated differential
  • Atypical/abnormal RBC morphology
  • Any RBC inclusions

Step 3 If any of the following are seen on the manual differential, a Pathologist will review the slide:

  • WBC<1,500 with abnormal cells noted
  • Blasts/immature cells, hairy cell lymphs, or megakaryocytes
  • New abnormal lymphocytes or monocytes
  • Variant or atypical lymphs >15%
  • Blood parasites
  • RBC morphology with 3+ spherocytes, RBC inclusions, suspect Hgb-C,
  • crystals, Pappenheimer bodies or bizarre morphology
  • nRBC’s

Description: A Comprehensive Metabolic Panel or CMP is a blood test that is a combination of a Basic Metabolic Panel, a Liver Panel, and electrolyte panel, and is used to screen for, diagnose, and monitor a variety of conditions and diseases such as liver disease, diabetes, and kidney disease. 

Also Known As: CMP, Chem, Chem-14, Chem-12, Chem-21, Chemistry Panel, Chem Panel, Chem Screen, Chemistry Screen, SMA 12, SMA 20, SMA 21, SMAC, Chem test

Collection Method: 

Blood Draw 

Specimen Type: 

Serum 

Test Preparation: 

9-12 hours fasting is preferred. 

When is a Comprehensive Metabolic Panel test ordered:  

A CMP is frequently requested as part of a lab test for a medical evaluation or yearly physical. A CMP test consists of many different tests that give healthcare providers a range of information about your health, including liver and kidney function, electrolyte balance, and blood sugar levels. To confirm or rule out a suspected diagnosis, abnormal test results are frequently followed up with other tests that provide a more in depth or targeted analysis of key areas that need investigating. 

What does a Comprehensive Metabolic Panel blood test check for? 

The complete metabolic panel (CMP) is a set of 20 tests that provides critical information to a healthcare professional about a person's current metabolic status, check for liver or kidney disease, electrolyte and acid/base balance, and blood glucose and blood protein levels. Abnormal results, particularly when they are combined, can suggest a problem that needs to be addressed. 

The following tests are included in the CMP: 

  • Albumin: this is a measure of Albumin levels in your blood. Albumin is a protein made by the liver that is responsible for many vital roles including transporting nutrients throughout the body and preventing fluid from leaking out of blood vessels. 

  • Albumin/Globulin Ratio: this is a ratio between your total Albumin and Globulin  

  • Alkaline Phosphatase: this is a measure of Alkaline phosphatase or ALP in your blood. Alkaline phosphatase is a protein found in all body tissues, however the ALP found in blood comes from the liver and bones. Elevated levels are often associated with liver damage, gallbladder disease, or bone disorder. 

  • Alt: this is a measure of Alanine transaminase or ALT in your blood. Alanine Aminotransferase is an enzyme found in the highest amounts in the liver with small amounts in the heart and muscles. Elevated levels are often associated with liver damage. 

  • AST: this is a measure of Aspartate Aminotransferase or AST. Aspartate Aminotransferase is an enzyme found mostly in the heart and liver, with smaller amounts in the kidney and muscles. Elevated levels are often associated with liver damage. 

  • Bilirubin, Total: this is a measure of bilirubin in your blood. Bilirubin is an orange-yellowish waste product produced from the breakdown of heme which is a component of hemoglobin found in red blood cells. The liver is responsible for removal of bilirubin from the body. 

  • Bun/Creatinine Ratio: this is a ratio between your Urea Nitrogen (BUN) result and Creatinine result.  

  • Calcium: this is a measurement of calcium in your blood. Calcium is the most abundant and one of the most important minerals in the body as it essential for proper nerve, muscle, and heart function. 

  • Calcium: is used for blood clot formation and the formation and maintenance of bones and teeth. 

  • Carbon Dioxide: this is a measure of carbon dioxide in your blood. Carbon dioxide is a negatively charged electrolyte that works with other electrolytes such as chloride, potassium, and sodium to regulate the body’s acid-base balance and fluid levels.  

  • Chloride: this is a measure of Chloride in your blood. Chloride is a negatively charged electrolyte that works with other electrolytes such as potassium and sodium to regulate the body’s acid-base balance and fluid levels. 

  • Creatinine: this is a measure of Creatinine levels in your blood. Creatinine is created from the breakdown of creatine in your muscles and is removed from your body by the kidneys. Elevated creatinine levels are often associated with kidney damage. 

  • Egfr African American: this is a measure of how well your kidneys are functioning. Glomeruli are tiny filters in your kidneys that filter out waste products from your blood for removal while retaining important substances such as nutrients and blood cells. 

  • Egfr Non-Afr. American: this is a measure of how well your kidneys are functioning. Glomeruli are tiny filters in your kidneys that filter out waste products from your blood for removal while retaining important substances such as nutrients and blood cells. 

  • Globulin: this is a measure of all blood proteins in your blood that are not albumin. 

  • Glucose: this is a measure of glucose in your blood. Glucose is created from the breakdown of carbohydrates during digestion and is the body’s primary source of energy. 

  • Potassium: this is a measure of Potassium in your blood. Potassium is an electrolyte that plays a vital role in cell metabolism, nerve and muscle function, and transport of nutrients into cells and removal of wastes products out of cells. 

  • Protein, Total: this is a measure of total protein levels in your blood. 
    Sodium: this is a measure of Sodium in your blood. Sodium is an electrolyte that plays a vital role in nerve and muscle function. 

  • Urea Nitrogen (Bun): this is a measure of Urea Nitrogen in your blood, also known as Blood UreaNitrogen (BUN). Urea is a waste product created in the liver when proteins are broken down into amino acids. Elevated levels are often associated with kidney damage. 

Lab tests often ordered with a Comprehensive Metabolic Panel test: 

  • Complete Blood Count with Differential and Platelets
  • Iron and Total Iron Binding Capacity
  • Lipid Panel
  • Vitamin B12 and Folate
  • Prothrombin with INR and Partial Thromboplastin Times
  • Sed Rate (ESR)
  • C-Reactive Protein

Conditions where a Comprehensive Metabolic Panel test is recommended: 

  • Diabetes
  • Kidney Disease
  • Liver Disease
  • Hypertension

Commonly Asked Questions: 

How does my health care provider use a Comprehensive Metabolic Panel test? 

The comprehensive metabolic panel (CMP) is a broad screening tool for assessing organ function and detecting diseases like diabetes, liver disease, and kidney disease. The CMP test may also be requested to monitor known disorders such as hypertension and to check for any renal or liver-related side effects in persons taking specific drugs. If a health practitioner wants to follow two or more separate CMP components, the full CMP might be ordered because it contains more information. 

What do my Comprehensive Metabolic Panel test results mean? 

The results of the tests included in the CMP are usually analyzed together to look for patterns. A single abnormal test result may indicate something different than a series of abnormal test findings. A high result on one of the liver enzyme tests, for example, is not the same as a high result on several liver enzyme tests. 

Several sets of CMPs, frequently performed on various days, may be examined to gain insights into the underlying disease and response to treatment, especially in hospitalized patients. 

Out-of-range findings for any of the CMP tests can be caused by a variety of illnesses, including kidney failure, breathing issues, and diabetes-related complications, to name a few. If any of the results are abnormal, one or more follow-up tests are usually ordered to help determine the reason and/or establish a diagnosis. 

Is there anything else I should know? 

A wide range of prescription and over-the-counter medications can have an impact on the results of the CMP's components. Any medications you're taking should be disclosed to your healthcare professional. Similarly, it is critical to provide a thorough history because many other circumstances can influence how your results are interpreted. 

What's the difference between the CMP and the BMP tests, and why would my doctor choose one over the other? 

The CMP consists of 14 tests, while the basic metabolic panel (BMP) is a subset of those with eight tests. The liver (ALP, ALT, AST, and bilirubin) and protein (albumin and total protein) tests are not included. If a healthcare provider wants a more thorough picture of a person's organ function or to check for specific illnesses like diabetes or liver or kidney disease, he or she may prescribe a CMP rather than a BMP. 

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.

Please note the following regarding BUN/Creatinine ratio: 

The lab does not report the calculation for the BUN/Creatinine Ratio unless one or both biomarkers’ results fall out of the published range. 

If you still wish to see the value, it's easy to calculate. Simply take your Urea Nitrogen (BUN) result and divide it by your Creatinine result.  

As an example, if your Urea Nitrogen result is 11 and your Creatinine result is 0.86, then you would divide 11 by 0.86 and get a BUN/Creatinine Ratio result of 12.79. 


Most Popular
Serum creatinine is useful in the evaluation of kidney function and in monitoring renal dialysis. A serum creatinine result within the reference range does not rule out renal function impairment: serum creatinine is not sensitive to early renal damage since it varies with age, gender and ethnic background. The impact of these variables can be reduced by an estimation of the glomerular filtration rate using an equation that includes serum creatinine, age and gender.

See individual tests

Most Popular

Description: A Ferritin test is a blood test that measures Ferritin levels in your blood’s serum to evaluate the level of iron stored in your body.

Also Known As: Ferritin Serum Test, Ferritin Test, Ferritin Blood Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is a Ferritin test ordered?

When a CBC test’s implies iron deficiency anemia due to small red blood cells or low hematocrit and hemoglobin levels, the ferritin test, and other iron tests, may be requested, even if other clinical symptoms have not yet arisen.

There are frequently no physical symptoms in the early stages of iron insufficiency. Symptoms rarely develop before hemoglobin falls below dangerous levels. However, when the iron deficit continues, symptoms emerge, prompting a doctor to order ferritin and other iron-related testing. The following are the most prevalent symptoms of iron deficiency anemia:

  • Chronic tiredness/fatigue
  • Weakness
  • Dizziness
  • Headaches
  • Skin that is pale

Shortness of breath, ringing in the ears, sleepiness, and irritability may occur as iron levels are reduced. Chest pain, headaches, limb pains, shock, and even heart failure may occur as the anemia worsens. Learning impairments can occur in children. There are some symptoms that are specific to iron deficiency, in addition to the usual signs of anemia. Pica, a burning feeling in the tongue or a smooth tongue, ulcers at the corners of the mouth, and spoon-shaped finger- and toe-nails are only a few of the symptoms.

When iron overload is suspected, a ferritin level may be requested. Iron overload symptoms differ from person to person and tend to worsen over time. They are caused by an excess of iron in the blood and tissues. Among the signs and symptoms are:

  • Joint discomfort
  • Weakness and exhaustion
  • Loss of weight
  • Energy deficiency
  • Pain in the abdomen
  • Suffering from a lack of sexual desire
  • Hair loss on the body
  • Congestive heart failure is an example of a cardiac issue

Other iron tests including a genetic test for hereditary hemochromatosis may be conducted to confirm the existence of iron excess.

What does a Ferritin blood test check for?

Ferritin is an iron-containing protein that stores iron in cells in its most basic form. The amount of total iron stored in the body is reflected in the little amount of ferritin released into the blood. This test determines how much ferritin is present in the blood.

About 70% of the iron consumed by the body is integrated into the hemoglobin of red blood cells in healthy humans. The remaining 30% is stored primarily as ferritin or hemosiderin, which is a combination of iron, proteins, and other elements. Hemosiderin and ferritin are typically found in the liver, although they can also be found in the bone marrow, spleen, and skeletal muscles.

Iron stores are depleted and ferritin levels fall when available iron is insufficient to meet the body's needs. This can happen owing to a lack of iron, poor absorption, or an increased need for iron, such as during pregnancy or if you have a condition that causes persistent blood loss. Before any indicators of iron shortage appear, significant loss of iron reserves may occur.

When the body absorbs more iron than it needs, iron storage and ferritin levels rise. Chronic iron absorption causes a gradual buildup of iron compounds in organs, which can eventually lead to organ malfunction and failure. Even on a typical diet, this happens in hemochromatosis, a hereditary disorder in which the body absorbs too much iron.

Lab tests often ordered with a Ferritin test:

  • Complete Blood Count
  • Iron Total
  • Iron Total and Total Iron binding capacity
  • Transferrin
  • Comprehensive Metabolic Panel
  • Lipid Panel
  • Zinc Protoporphyrin

Conditions where a Ferritin test is recommended:

  • Anemia
  • Hemochromatosis
  • Lead poisoning
  • Pregnancy
  • Restless Leg Syndrome

How does my health care provider use a Ferritin test?

The ferritin test is used to determine the amount of iron a person has in their body. To determine the existence and severity of iron shortage or iron overload, the test is sometimes ordered in conjunction with an iron test and a TIBC test.

One source of iron overload can be the use of iron supplements.

What does my ferritin lab test result mean?

Ferritin levels are frequently measured alongside other iron tests.

Ferritin levels are low in iron deficient people and high in people who have hemochromatosis or have had several blood transfusions.

Ferritin is an acute phase reactant that can be elevated in persons who have inflammation, liver illness, chronic infection, autoimmune disorders, or cancer. Ferritin isn't commonly utilized to detect or monitor these problems.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Most Popular

Description: A Glucose test is a blood test used to screen for, diagnose, and monitor conditions that affect glucose levels such as prediabetes, diabetes, hyperglycemia, and hypoglycemia.

Also Known As: Fasting Blood Glucose Test, FBG Test, Fasting Blood Sugar Test, FBS Test, Fasting Glucose Test, FG Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: Fasting required

When is a Glucose test ordered?

Diabetes screening is recommended by several health groups, including the American Diabetes Association and the United States Preventive Services Task Force, when a person is 45 years old or has risk factors.

The ADA recommends retesting within three years if the screening test result is within normal limits, but the USPSTF recommends testing once a year. Annual testing may be used to monitor people with prediabetes.

When someone exhibits signs and symptoms of high blood glucose, a blood glucose test may be conducted.

Diabetics are frequently asked to self-check their glucose levels multiple times a day in order to monitor glucose levels and choose treatment alternatives as suggested by their doctor. Blood glucose levels may be ordered on a regular basis, along with other tests such as A1c, to track glucose control over time.

Unless they show early symptoms or have had gestational diabetes in a prior pregnancy, pregnant women are routinely screened for gestational diabetes between the 24th and 28th week of pregnancy. If a woman is at risk of type 2 diabetes, she may be tested early in her pregnancy, according to the American Diabetes Association. When a woman has type 1, type 2, or gestational diabetes, her health care provider will normally order glucose levels to monitor her condition throughout the duration of her pregnancy and after delivery.

What does a Glucose blood test check for?

A fasting glucose test measures glucose. Glucose is the major energy source for the body's cells and the brain and nervous system's only source of energy. A consistent supply must be provided, and a somewhat constant level of glucose in the blood must be maintained. The glucose level in the blood can be measured using a variety of methods. 

Fruits, vegetables, breads, and other carbohydrate-rich foods are broken down into glucose during digestion, which is absorbed by the small intestine and circulated throughout the body. Insulin, a hormone generated by the pancreas, is required for the use of glucose for energy production. Insulin promotes glucose transport into cells and instructs the liver to store surplus energy as glycogen for short-term storage or triglycerides in adipose cells.

Normally, blood glucose rises slightly after you eat or drink, and the pancreas responds by releasing insulin into the blood, the amount of which is proportional to the size and substance of the meal. The level of glucose in the blood declines as glucose enters the cells and is digested, and the pancreas responds by delaying, then ceasing the secretion of insulin.

When blood glucose levels fall too low, such as between meals or after a strong activity, glucagon is released, which causes the liver to convert some glycogen back into glucose, so boosting blood glucose levels. The level of glucose in the blood remains pretty steady if the glucose/insulin feedback loop is working appropriately. When the balance is upset and the blood glucose level rises, the body strives to restore it by boosting insulin production and removing excess glucose through the urine.

Several diseases can cause the equilibrium between glucose and pancreatic hormones to be disrupted, resulting in high or low blood glucose. Diabetes is the most common cause. Diabetes is a collection of illnesses characterized by inadequate insulin production and/or insulin resistance. Untreated diabetes impairs a person's ability to digest and utilize glucose normally. Type 1 diabetes is diagnosed when the body is unable to produce any or enough insulin. People with prediabetes or type 2 diabetes are insulin resistant and may or may not be able to produce enough of the hormone.

Organ failure, brain damage, coma, and, in extreme situations, death can result from severe, sudden fluctuations in blood glucose, either high or low. Chronically high blood glucose levels can harm body organs like the kidneys, eyes, heart, blood vessels, and nerves over time. Hypoglycemia can harm the brain and nerves over time.

Gestational diabetes, or hyperglycemia that exclusively arises during pregnancy, can affect some women. If left untreated, this can result in large babies with low glucose levels being born to these mothers. Women with gestational diabetes may or may not acquire diabetes later in life.

Lab tests often ordered with a Glucose test:

  • Complete Blood Count
  • Iron Total and Total Iron binding capacity
  • Hemoglobin A1c
  • Lipid Panel
  • Urinalysis Complete
  • TSH
  • CMP
  • Insulin
  • Microalbumin
  • Fructosamine
  • C-Peptide

Conditions where a Glucose test is recommended:

  • Diabetes
  • Kidney Disease
  • Insulin Resistance
  • Pancreatic Diseases
  • Hyperglycemia
  • Hypoglycemia

Commonly Asked Questions:

How does my health care provider use a Glucose test?

The blood glucose test can be used for a variety of purposes, including:

  • Detect hyperglycemia and hypoglycemia
  • Screen for diabetes in those who are at risk before symptoms appear; there may be no early indications or symptoms of diabetes in some circumstances. As a result, screening can aid in detecting it and allowing treatment to begin before the illness worsens or complications emerge.
  • Aid in the detection of diabetes, prediabetes, and gestational diabetes.
  • Monitor your blood sugar levels and manage your diabetes

Glucose levels should be monitored in those who have been diagnosed with diabetes.

Between the 24th and 28th week of pregnancy, glucose blood tests are performed to assess pregnant women for gestational diabetes. Pregnant women who have never been diagnosed with diabetes should be screened and diagnosed using either a one-step or two-step strategy, according to the American Diabetes Association and the US Preventive Services Task Force.

Other tests, including diabetic autoantibodies, insulin, and C-peptide, may be used in conjunction with glucose to assist in detecting the reason of elevated glucose levels, differentiate between type 1 and type 2 diabetes, and assess insulin production.

What does my glucose test result mean?

High blood glucose levels are most commonly associated with diabetes, but they can also be caused by a variety of other diseases and ailments.

Hypoglycemia is defined by a drop in blood glucose to a level that triggers nervous system symptoms before affecting the brain. The Whipple triad is a set of three criteria for diagnosing hypoglycemia.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: Hemoglobin A1c is the protein Hemoglobin found in red blood cells, but with glucose attached to it. Hemoglobin A1c is used to check for and monitor diabetes as it shows average blood glucose levels over the past 2 to 3 months.

Also Known As: A1c Test, HbA1c Test, Glycohemoglobin Test, Glycated Hemoglobin Test, Glycosylated Hemoglobin Test, HbA1c Test

Collection Method: Blood Draw

Specimen Type: Whole Blood

Test Preparation: No preparation required

When is a Hemoglobin A1c test ordered?

A1c may be requested as part of a routine physical examination or when a practitioner suspects a patient of having diabetes due to characteristic signs or symptoms of high blood sugar, such as:

  • Increased thirst and fluid intake
  • Increased urination
  • Increase in hunger
  • Fatigue
  • Vision is hazy
  • Infections that take a long time to heal

Adults who are overweight and have the following additional risk factors may consider doing the A1c test:

  • Physically inactive
  • Diabetes in a first-degree relative
  • Race/ethnicity that is at high risk such as African Americans, Latinos, Native Americans, Asian Americans, and Pacific Islanders
  • Blood pressure that is high
  • A lipid profile that is abnormal.
  • Polycystic ovarian syndrome 
  • Cardiovascular disease 
  • Insulin resistance and other conditions links to insulin resistance

People who have not been diagnosed with diabetes but have been assessed to be at an increased risk of developing diabetes should have their A1c levels tested at least once a year.

Monitoring

The A1c test may be performed 2 to 4 times a year, depending on the type of diabetes a person has, how well their diabetes is controlled, and the healthcare provider's recommendations. If diabetics are fulfilling treatment goals and have stable glycemic control, the American Diabetes Association advises A1c testing at least twice a year. A1c may be ordered quarterly when someone is first diagnosed with diabetes or if control isn't good.

What does a Hemoglobin A1c blood test check for?

Hemoglobin A1c, often known as A1c or glycated hemoglobin, is hemoglobin that has been attached to glucose. By assessing the proportion of glycated hemoglobin, the A1c test determines the average quantity of glucose in the blood during the previous 2 to 3 months.

Hemoglobin is a protein present inside red blood cells that transports oxygen.

Glycated hemoglobin is generated in proportion to the amount of glucose in the blood. Once glucose attaches to hemoglobin, it stays there for the duration of the red blood cell's life, which is usually about 120 days. The most common kind of glycated hemoglobin is known as A1c. A1c is created on a daily basis and is gradually removed from the bloodstream as older RBCs die and younger RBCs replace them.

This test can be used to detect and diagnose diabetes, as well as the risk of developing it. According to the American Diabetes Association's standards of medical care in diabetes, diabetes can be diagnosed using either A1c or glucose.

This test can also be used to track the progress of a diabetic patient's treatment. It aids in determining how well a person's glucose levels have been controlled over time by medication. An A1c of less than 7% suggests good glucose control and a lower risk of diabetic complications for the majority of diabetics for monitoring reasons.

Lab tests often ordered with a Hemoglobin A1c test:

  • Complete Blood Count
  • Glucose
  • Frucstosamine
  • Albumin
  • Comprehensive Metabolic Panel
  • Microalbumin w/creatinine
  • Lipid panel

Conditions where a Hemoglobin A1c test is recommended:

  • Type 1 Diabetes
  • Type 2 Diabetes

How does my health care provider use a Hemoglobin A1c test?

Adults can use the hemoglobin A1c test to screen for and diagnose diabetes and prediabetes.

A fasting glucose or oral glucose tolerance test should be done to screen or diagnose diabetes in these instances.

The A1c test is also used to track diabetics' glucose control over time. Diabetics strive to maintain blood glucose levels that are as close to normal as feasible. This helps to reduce the risks of consequences associated with chronically high blood sugar levels, such as progressive damage to body organs such as the kidneys, eyes, cardiovascular system, and nerves. The result of the A1c test depicts the average quantity of glucose in the blood over the previous 2-3 months. This can help diabetics and their healthcare professionals determine whether the steps they're taking to control their diabetes are working or if they need to be tweaked.

A1c is a blood test that is usually used to help newly diagnosed diabetics identify how high their uncontrolled blood glucose levels have been in the previous 2-3 months. The test may be ordered multiple times throughout the control period, and then at least twice a year after that to ensure that good control is maintained.

What does my Hemoglobin A1c test result mean?

HbA1c levels is currently reported as a percentage for monitoring glucose control, and it is suggested that most diabetics try to keep their hemoglobin A1c below 7%. The closer diabetics can keep their A1c to the therapeutic objective of less than 7% without experiencing abnormally low blood glucose, the better their diabetes is controlled. The risk of problems rises as the A1c rises.

However, a person with type 2 diabetes may have an A1c goal set by their healthcare professional. The length of time since diagnosis, the presence of other diseases as well as diabetes complications, the risk of hypoglycemia complications, life expectancy, and whether or not the person has a support system and healthcare resources readily available are all factors that may influence the goal.

For example, a person with heart disease who has had type 2 diabetes for many years without diabetic complications may have a higher A1c target set by their healthcare provider, whereas someone who is otherwise healthy and newly diagnosed may have a lower target set by their healthcare provider as long as low blood sugar is not a significant risk.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Most Popular

Brief Description: An Insulin test is a blood test that measures the insulin levels in the blood's serum. It is a measurement that is heavily used in patients with diabetes.

Also Known As: Fasting Insulin Test, Insulin Assay Test, Insulin Serum Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: 9 Hours Fasting Required

When is an Insulin test ordered?

Insulin levels are most commonly ordered after a low glucose result or when someone has acute or chronic symptoms of hypoglycemia.  Hypoglycemia can cause the following symptoms:

  • Sweating
  • Palpitations
  • Hunger
  • Brain fox
  • Hazy vision
  • Dizziness
  • Fainting

Seizures and loss of consciousness are common in severe instances.

While low blood glucose can cause these symptoms, they can also be caused by other illnesses.

When a person has or is suspected of having insulin resistance, an insulin test may be performed. People with type 2 diabetes, polycystic ovary syndrome, prediabetes or cardiac disease, or metabolic syndrome may fall into this category.

After an insulinoma has been effectively removed, a health practitioner may arrange insulin and C-peptide testing to verify the effectiveness of treatment and subsequently order the tests on a regular basis to monitor for recurrence.

Periodic testing can also be performed to track the success of an islet cell transplant by determining the graft's insulin-producing capacity.

What does an Insulin blood test check for?

Insulin is a hormone produced in the pancreas' beta cells and stored there. It is necessary for the transfer and storage of glucose, the body's primary energy source. Insulin aids in the delivery of glucose from the bloodstream to cells, as well as the regulation of blood glucose levels and lipid metabolism. This test determines how much insulin is present in the blood.

The levels of insulin and glucose in the blood must be balanced. Carbohydrates are frequently broken down into glucose and other simple sugars after a meal. The blood glucose level rises, prompting the pancreas to produce insulin into the bloodstream. The amount of glucose in the blood reduces as it enters cells, and the amount of insulin released by the pancreas decreases.

If an individual is unable to produce enough insulin, or if the body's cells become resistant to its effects, glucose is unable to reach the majority of the body's cells, causing the cells to starve as blood glucose climbs to harmful levels. This can disrupt normal metabolic processes, leading to a variety of illnesses and difficulties, such as kidney disease, cardiovascular disease, and eyesight and neurological issues.

Diabetes is a life-threatening illness characterized by excessive glucose levels and diminished insulin action. People with type 1 diabetes produce relatively little insulin, necessitating the use of insulin supplements. Insulin resistance is a common cause of type 2 diabetes, which worsens over time.

Insulin resistance occurs when the body is unable to respond to insulin's effects. The body makes up for this by manufacturing more of the hormone. Hyperinsulinemia and overstimulation of some insulin-sensitive tissues happen as a result of this. This process generates an imbalance in the connection between glucose and insulin over time, which, if left untreated, can lead to health problems affecting numerous regions of the body.

Insulin resistance can be present in people with polycystic ovary syndrome, prediabetes or cardiac disease, metabolic syndrome, and diseases of the pituitary or adrenal glands, in addition to type 2 diabetes.

Hyperinsulinemia is most commonly seen in persons with tumors of the pancreatic islet cells or an excess of injected insulin, aside from insulin resistance. Low blood sugar is caused by hyperinsulinemia, which can cause sweating, hunger, palpitations, confusion, dizziness, blurred vision, seizures, and fainting. Because the brain relies on blood glucose for energy, severe glucose deprivation caused by hyperinsulinemia can swiftly result in insulin shock and death.

Lab tests often ordered with an Insulin test:

  • Glucose
  • Hemoglobin A1c
  • C-Peptide
  • Comprehensive Metabolic Panel

Conditions where an Insulin test is recommended:

  • Diabetes
  • Insulin Resistance
  • PCOS
  • Metabolic Syndrome

Commonly Asked Questions:

How does my health care provider use an insulin test?

Insulin testing can be used for a variety of purposes. Insulin is a hormone produced in the pancreas' beta cells and stored there. Insulin is a hormone that aids in the movement of glucose, the body's primary source of energy, from the bloodstream to the cells. Cells starve if a person produces too little insulin or is resistant to its effects. When someone produces too much insulin, such as when they have an insulin-producing tumor, symptoms of low blood glucose appear.

Insulin testing may be used to assist with the following:

  • Diagnose an insulinoma, confirm that the tumor was successfully removed, and/or keep an eye out for recurrence.
  • Determine the source of hypoglycemia in a person who has signs and symptoms.
  • Recognize insulin resistance.
  • In this instance, a C-peptide test may be used to monitor the quantity of insulin produced by the beta cells in the pancreas. As part of the conversion of proinsulin to insulin in the pancreas, the body produces both insulin and C-peptide at the same time. When a doctor wishes to know how much insulin is created by the body and how much comes from outside sources like insulin injections, both tests may be ordered. The C-peptide test indicates insulin produced by the pancreas, but the insulin test analyzes insulin from both sources.
  • Determine when a type 2 diabetic may need to supplement oral medications with insulin.

Insulin tests can be ordered in conjunction with glucose and C-peptide tests. In addition to the glucose tolerance test, insulin levels are sometimes employed. To assess insulin resistance, blood glucose and insulin levels are tested at pre-determined time intervals in this circumstance.

What do my Insulin test result mean?

Insulin levels must be reviewed in the context of other diagnostic tests and symptoms.

Insulin levels can be elevated with:

  • Acromegaly
  • Cushing's syndrome
  • Use of medications such as corticosteroids, levodopa, and oral contraceptives
  • Intolerance to fructose or galactose
  • Insulinomas
  • Obesity
  • Insulin resistance, as seen in type 2 diabetes and metabolic syndrome

Insulin levels can be low with:

  • Diabetes 
  • Hypopituitarism
  • Chronic pancreatitis 
  • Pancreatic cancer

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: A Lipid Panel is a blood test that measures your cholesterol levels to evaluate your risk of cardiovascular disease.

Also Known As: Lipid Profile Test, Lipid Test, Cholesterol Profile Test, Cholesterol Panel Test, Cholesterol Test, Coronary Risk Panel Test, lipid blood test, Lipid w/Ratios Test, Cholesterol Ratio test, blood cholesterol Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: Patient should be fasting 9-12 hours prior to collection.

When is a Lipid Panel with Ratios test ordered?

A fasting lipid profile should be done about every five years in healthy persons who have no additional risk factors for heart disease. A single total cholesterol test, rather than a complete lipid profile, may be used for initial screening. If the screening cholesterol test result is high, a lipid profile will almost certainly be performed.

More regular testing with a full lipid profile is indicated if other risk factors are present or if earlier testing revealed a high cholesterol level.

Other risk factors, in addition to high LDL cholesterol, include:

  • Smoking
  • Obesity or being overweight
  • Unhealthy eating habits
  • Not getting enough exercise and being physically inactive
  • Older age
  • Having hypertension
  • Premature heart disease in the family
  • Having experienced a heart attack or having pre-existing heart disease

Diabetes or pre-diabetes is a condition in which a person has High HDL is a "negative risk factor," and its existence permits one risk factor to be removed from the total.

The American Academy of Pediatrics recommends routine lipid testing for children and young adults. Children and teenagers who are at a higher risk of developing heart disease as adults should be screened with a lipid profile earlier and more frequently. A family history of heart disease or health problems such as diabetes, high blood pressure, or being overweight are some of the risk factors, which are comparable to those in adults. According to the American Academy of Pediatrics, high-risk children should be examined with a fasting lipid profile between the ages of 2 and 8.

A lipid profile can also be done at regular intervals to assess the effectiveness of cholesterol-lowering lifestyle changes like diet and exercise, as well as pharmacological therapy like statins.

What does a Lipid Panel with Ratios blood test check for?

Lipids are a class of fats and fat-like compounds that are essential components of cells and energy sources. The level of certain lipids in the blood is measured by a lipid profile.

Lipoprotein particles transport two key lipids, cholesterol and triglycerides, through the bloodstream. Protein, cholesterol, triglyceride, and phospholipid molecules are all present in each particle. High-density lipoproteins, low-density lipoproteins, and very low-density lipoproteins are the three types of particles assessed with a lipid profile.

It's critical to keep track of and maintain optimal levels of these lipids in order to stay healthy. While the body creates the cholesterol required for normal function, some cholesterol is obtained from the diet. A high amount of cholesterol in the blood can be caused by eating too many foods high in saturated fats and trans fats or having a hereditary tendency. The excess cholesterol may form plaques on the inside walls of blood vessels. Plaques can constrict or block blood channel openings, causing artery hardening and raising the risk of a variety of health problems, including heart disease and stroke. Although the explanation for this is unknown, a high level of triglycerides in the blood is linked to an increased risk of developing cardiovascular disease.

A lipid profile consists of the following elements:

  • Cholesterol total
  • HDL Cholesterol - commonly referred to as "good cholesterol" since it eliminates excess cholesterol from the body and transports it to the liver for elimination.
  • LDL Cholesterol - commonly referred to as "bad cholesterol" because it deposits excess cholesterol in the walls of blood arteries, contributing to atherosclerosis.
  • Triglycerides
  • Ratio of LDL to HDL cholesterol

Lab tests often ordered with a Lipid Panel with Ratios test:

  • CBC (Blood Count Test) with Smear Review
  • Comprehensive Metabolic Panel
  • Direct LDL
  • VLDL
  • Lp-PLA2
  • Apolipoprotein A1
  • Apolipoprotein B
  • Lipoprotein (a)
  • Lipoprotein Fractionation Ion Mobility (LDL Particle Testing)

Conditions where a Lipid Panel with Ratios test is recommended:

  • Hypertension
  • Cardiovascular Disease
  • Heart Disease
  • Stroke

Commonly Asked Questions:

How does my health care provider use a Lipid Panel with Ratios test?

The lipid profile is used as part of a cardiac risk assessment to help determine an individual's risk of heart disease and, if there is a borderline or high risk, to help make treatment options.

Lipids are a class of fats and fat-like compounds that are essential components of cells and energy sources. It's critical to keep track of and maintain optimal levels of these lipids in order to stay healthy.

To design a therapy and follow-up strategy, the results of the lipid profile are combined with other recognized risk factors for heart disease. Treatment options may include lifestyle changes such as diet and exercise, as well as lipid-lowering drugs such as statins, depending on the results and other risk factors.

A normal lipid profile test measures the following elements:

  • Total cholesterol is a test that determines how much cholesterol is present in all lipoprotein particles.
  • HDL Cholesterol — measures hdl cholesterol in particles, sometimes referred to as "good cholesterol" since it eliminates excess cholesterol and transports it to the liver for elimination.
  • LDL Cholesterol – estimates the cholesterol in LDL particles; sometimes known as "bad cholesterol" since it deposits excess cholesterol in blood vessel walls, contributing to atherosclerosis. The amount of LDL Cholesterol is usually estimated using the total cholesterol, HDL Cholesterol, and triglycerides readings.
  • Triglycerides – triglycerides are measured in all lipoprotein particles, with the highest concentration in very-low-density lipoproteins.
  • As part of the lipid profile, several extra information may be presented. The results of the above-mentioned tests are used to determine these parameters.
  • VLDL Cholesterol — derived using triglycerides/5; this calculation is based on the typical VLDL particle composition.
  • Non-HDL Cholesterol - the result of subtracting total cholesterol from HDL Cholesterol.
  • Cholesterol/HDL ratio — total cholesterol to HDL Cholesterol ratio computed.

An expanded profile may include the amount and concentration of low-density lipoprotein particles. Rather than assessing the amount of LDL cholesterol, this test counts the number of LDL particles. This figure is thought to more accurately reflect the risk of heart disease in some persons.

What do my Lipid Panel test results mean?

Healthy lipid levels, in general, aid in the maintenance of a healthy heart and reduce the risk of heart attack or stroke. A health practitioner would analyze the results of each component of a lipid profile, as well as other risk factors, to assess a person's total risk of coronary heart disease, if therapy is required, and, if so, which treatment will best serve to reduce the person's risk of heart disease.

The Adult Treatment Panel III of the National Cholesterol Education Program published guidelines for measuring lipid levels and selecting treatment in 2002. The American College of Cardiology and the American Heart Association announced updated cholesterol therapy guidelines in 2013 to minimize the risk of cardiovascular disease in adults. These guidelines suggest a different treatment method than the NCEP guidelines. Cholesterol-lowering medications are now chosen based on the 10-year risk of atherosclerotic cardiovascular disease and other criteria, rather than on LDL-C or non-HDL-C objectives.

The revised guidelines include an evidence-based risk calculator for ASCVD that may be used to identify people who are most likely to benefit from treatment. It's for adults between the ages of 40 and 79 who don't have a heart condition. The computation takes into account a number of characteristics, including age, gender, race, total cholesterol, HDL-C, blood pressure, diabetes, and smoking habits. The new guidelines also suggest comparing therapeutic response to LDL-C baseline readings, with decrease criteria varying depending on the degree of lipid-lowering medication therapy.

Unhealthy lipid levels, as well as the presence of additional risk factors like age, family history, cigarette smoking, diabetes, and high blood pressure, may indicate that the person being examined needs to be treated.

The NCEP Adult Treatment Panel III guidelines specify target LDL cholesterol levels based on the findings of lipid testing and these other main risk factors. Individuals with LDL-C levels over the target limits will be treated, according to the guidelines.

According to the American Academy of Pediatrics, screening youths with risk factors for heart disease with a full, fasting lipid panel is advised. Fasting is not required prior to lipid screening in children who do not have any risk factors. For non-fasting lipid screening, non-high-density lipoprotein cholesterol is the preferred test. Non-HDL-C is computed by subtracting total cholesterol and HDL-C from total cholesterol and HDL-C.

Is there anything else I should know?

The measurement of triglycerides in people who haven't fasted is gaining popularity. Because most of the day, blood lipid levels reflect post-meal levels rather than fasting levels, a non-fasting sample may be more representative of the "usual" circulating level of triglyceride. However, because it is still unclear how to interpret non-fasting levels for assessing risk, the current recommendations for fasting before lipid tests remain unchanged.

A fasting lipid profile is usually included in a routine cardiac risk assessment. In addition, research into the utility of additional non-traditional cardiac risk markers, such as Lp-PLA2, is ongoing. A health care provider may use one or more of these markers to help determine a person's risk, but there is no consensus on how to use them and they are not widely available.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Most Popular

Description: Lp(a) is a test that is measuring for the levels of Lipoprotein in the blood’s serum. This test can be used to evaluate the risk for cardiovascular disease.

Also Known As: Lipoprotein A Test, lipoprotein little a Test, lpa test, lp(a) test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is a Lipoprotein (a) test ordered?

Lp(a) is not a lipid profile that is commonly ordered. When an individual has a family history of heart disease at a young age that is not caused by high LDL or low HDL, it may be done along with other lipid testing.

This test may also be ordered by some doctors when:

  • A person has a history of heart or vascular disease, particularly if their lipid levels are normal or very slightly raised.
  • Someone is born with a genetic susceptibility to high cholesterol.
  • A individual who has had a stroke or a heart attack but whose lipids are normal or only slightly increased.

What does a Lipoprotein (a) blood test check for?

Lipoprotein (a), often known as Lp(a), is a lipoprotein that transports cholesterol through the bloodstream. It has a single apolipoprotein B protein, as well as cholesterol and other lipids, and is similar to low-density lipoprotein. This test evaluates a person's risk of getting cardiovascular disease by measuring the amount of Lp(a) in their blood.

Lp(a) is a risk factor for CVD, same as LDL. A person's level of Lp(a) is genetically determined and remains generally stable throughout their lives. Because a high level of Lp(a) is expected to contribute to a person's overall risk of CVD, this test could be useful as a CVD risk marker.

The protein portion of Lipoprotein (a) is made up of the following components:

  • Apolipoprotein B, a lipid-metabolizing protein that is the major protein ingredient of lipoproteins like LDL and VLDL
  • Apo (a), a second protein that is connected to Apo B. Apolipoprotein(a) is a protein with a unique structure that is considered to prevent clots from breaking down naturally. The apolipoprotein(a) portion of Lp(a) varies in size from person to person, with Caucasians having a smaller apolipoprotein(a) portion than those of African heritage. Although the importance of size variation in contributing to CVD risk is debatable, there is some evidence that smaller size increases risk. However, most Lipoprotein(a) assays don’t assess the size of Apo(a). Only Lipoprotein(a) levels in the blood are measured and reported.

Because roughly half of those who have heart attacks have normal cholesterol levels, scientists have looked for additional factors that may impact heart disease. Lp(a) is assumed to be one of these factors. Lp(a) has two possible contributions. For starters, because Lp(a) can stimulate the uptake of LDL into blood channel walls, it may aid in the formation of atherosclerotic plaque on blood vessel walls. Second, because apo(a) has a structure that inhibits clot-dissolving enzymes, Lp(a) may enhance clot buildup in the arteries. Lp(a) may be more atherogenic than LDL for these reasons.

Lab tests often ordered with a Lipoprotein (a) test:

  • Lipid Panel
  • Homocysteine
  • Hs-CRP
  • Apolipoprotein A1
  • Apolipoprotein B

Conditions where a Lipoprotein (a) test is recommended:

  • Heart Disease
  • Cardiovascular Disease
  • Heart Attack
  • Stroke

How does my health care provider use a Lipoprotein (a) test?

The Lp(a) test is used to determine whether an elevated level of lipoprotein (a) is a risk factor for cardiovascular disease. The test can be used in conjunction with a standard lipid profile to provide you further information about your CVD risk.

The Lp(a) level is determined by genetics and remains largely stable throughout a person's life. It is not the objective of therapy because it is usually unaffected by lifestyle modifications or most medicines. Instead, when Lp(a) is high, the presence of this additional risk factor may indicate that other, more manageable risk factors, such as an elevated low-density lipoprotein, require more urgent treatment.

What does my Lipoprotein (a) test result mean?

A high Lp(a) level raises the risk of cardiovascular disease and cerebral vascular disease. People with a normal lipid profile can develop high Lp(a). Lp(a) levels that are high are thought to increase the risk of heart disease independently of other lipids.

Lp(a) levels are genetically set and are difficult to adjust with lifestyle modifications or medicines. However, some non-genetic diseases can result in an increase in Lp (a). Estrogen depletion, hypercholesterolemia, hypothyroidism, diabetes, chronic renal failure, and nephrotic syndrome are examples of these conditions.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.



We've all heard the warning. "Consult your physician before beginning any diet or exercise program." But, most of the population continues right along with their new diet without even giving it a second thought.

Most of the time, things turn out ok. But in some instances, not consulting your doctor or having lab tests done can be a dangerous decision.

One of the most popular diets in recent years has been the keto diet. It would be best to get these keto diet blood tests done before you start and during the diet to ensure you remain healthy while getting the weight loss results you want.

In this article, we'll discuss the different keto diet blood tests available to you. We'll also talk about the benefits of taking a keto diet test and much more.

So read on! We've got a lot to cover.

What Are the Deficiencies That Occur With a Keto Diet?

The keto diet revolves around foods that are high in fat and high in protein. The diet also limits your intake of processed carbs. You can eat vegetables, but anything like bread, rice, grains, etc., is extremely limited on the keto diet.

Because of the nature of the diet, it can be a challenge to get all of the nutrients your body requires daily. The nutrients that keto users most commonly become deficient in are a group of nutrients known as "micronutrients."

Examples of the micronutrients you need to monitor for deficiencies while on the keto diet are selenium, magnesium, phosphorus, and vitamins B and C.

Another essential nutrient that you may be lacking while on keto is calcium. We all know how vital calcium can be for our bones and teeth. But, it provides several other functions as well.

Calcium is also important when it comes to the body's muscle and nerve function. It's also vital in keeping our blood vessels healthy.

The high-fat foods included in the keto diet create an acidic environment in the body. Calcium within your body is depleted to combat this highly acidic environment and neutralize your body's pH level. As a result, calcium tends to be lost through your urine, and bone density decreases.

Following a ketogenic diet can also decrease the amount of iron in your system. This happens even though keto dieters usually eat high quantities of meat. Losing iron in your system could result in a loss of energy and lower red blood cell production.

The severity of the symptoms can vary, but it can be very painful and uncomfortable in extreme cases.

The reduction of iron while on the keto diet results from the amount of high-fat foods recommended. Eating a lot of foods that are high in fat can reduce your body's ability to absorb iron. Signs of an iron deficiency are loss of energy and difficulty breathing.

Risk Factors for Keto Diet Deficiencies

There are several risk factors that you need to watch out for when starting the keto diet. Although many people have seen benefits from this type of diet, it can be a drastic change in your body.

One of the first things to watch out for is the keto flu. As a person's body switches from normal digestion to a state of ketosis, they can become sick. During this transition stage, it's common for people to experience flu-like symptoms.

The severity of the symptoms can vary, but in extreme cases, it can be very painful and uncomfortable.

The diet may also put stress on your kidneys and digestive system. Switching to a ketogenic diet can even alter the healthy bacteria found in your gut.

Switching to a keto lifestyle can also decrease your bone health, cause nutrient deficiencies, and put you at increased risk for chronic diseases. It could even put you at a higher risk of early death.

Signs and Symptoms of Keto Diet Deficiencies

The key to stopping keto diet deficiencies from becoming major health problems is to catch them early on. The best way to do that is by recognizing the signs and symptoms of these deficiencies.

As sodium, potassium, and water leave your body as it switches to a state of ketosis, causing the keto flu, which can deplete the following vitamins and minerals:

  • Selenium
  • Magnesium
  • B Vitamins
  • Phosphorous
  • Vitamin C

The long-term effects of the keto diet can be much more serious. Dieters who are following a keto lifestyle may experience kidney stones. They can also experience a condition known as fatty liver. A prolonged keto diet can also lead to low levels of protein in the blood.

Tests to Screen, Diagnose, and Monitor Keto Diet Deficiencies

Keto diets aren't all bad. They can be an excellent option for people with specific diseases and disorders. Whatever your reason for trying a keto diet, you need to make sure you're doing it right.

Here are the keto diet blood tests you should consider.

1. Monitor Your Blood Sugar

There is evidence showing that following a keto diet may affect your body's natural insulin response. As a result, it could affect your body's glucose levels.

A keto diet is a popular recommendation for people with diabetes, so you may already monitor your blood sugar levels. If not, it's a good idea to monitor these numbers regularly.

2. Cholesterol Levels

Eating a diet that's high in fat can cause a variety of health problems. These problems aren't easy to see on the surface, so monitoring cholesterol levels is important. This is the best way of catching these problems before they grow into something serious.

Your level of LDL cholesterol is what you need to pay attention to. This is what's considered bad cholesterol. These levels can rise if the fats you consume are unhealthy, saturated fats.

If you're following the keto diet correctly, you should be getting your fats from healthy sources like avocados, olive oil, fish, and nuts.

3. Monitor Thyroid Hormones

Your thyroid hormone levels are important because they are linked to several essential bodily functions. They can affect things such as fertility, heart rate, and metabolism.

If your thyroid is already functioning normally, then keto may not cause any issues. However, if your thyroid hormone levels are already low, eating a low-carb diet can cause them to drop even lower.

In order to properly monitor your micronutrients and screen for keto diet deficiencies, some other lab tests you may want to consider are:

  • Comprehensive Metabolic Panel (related to calcium and kidney and liver health)
  • Urinalysis (related to kidney health, ketones, and body pH levels)
  • Complete Blood Count (related to iron and red blood cell production)

These lab tests are available through Ulta Lab Tests and can give you a more in-depth look at how your body is performing during keto.

FAQs About Keto Diet Deficiencies

Keto is one of the most popular diets in America right now. As a result, people tend to have many questions about what is and isn't ok on the keto diet. They also have questions about keto diet blood tests.

Here are some of the most popular questions.

Q: What Deficiencies Does Keto Cause?

The most common deficiencies caused by a keto diet are deficiencies in micronutrients. These include selenium, magnesium, phosphorous, vitamin B, and vitamin C.

Q: Can Keto Cause Immune Deficiency?

Studies show that a ketogenic diet can affect the levels of "good" and "bad" bacteria in your body's GI tract. Your GI tract acts as the "security guard" of your immune system. If these bacteria levels are out of balance, it could affect your gut-brain function, your immune system and even affect your risk of chronic illness.

Q: When Should Ketones Be Monitored?

Your doctor will probably tell you to monitor your ketones if your blood sugar reaches high levels. The threshold is generally 250 mg/dl or higher for two days in a row.

Q: When Is the Best Time to Test Ketones in Urine

The best times to monitor ketone levels in your urine are early in the morning and late in the evening. If you aren't able to monitor your ketones early in the morning, it's suggested that you wait several hours after eating dinner before getting an evening reading.

Benefits of Keto Diet Deficiency Lab Testing with Ulta Lab Tests

Ulta Lab Tests offers highly accurate and reliable tests so you can make informed decisions about your health. Here are a few great things to love about your keto diet lab tests from Ulta Lab Tests:

  • You'll get secure and confidential results
  • You don't need health insurance
  • You don't need a physician's referral
  • You'll get affordable pricing
  • We offer a 100% satisfaction guarantee

Order your keto lab tests today, and your results will be provided to you securely and confidentially online in 24 to 48 hours for most tests.

Take control with Ulta Lab Tests today!