Chronic Inflammation

Chronic Inflammation Lab Tests and health information

Chronic inflammation can lead to serious health conditions like heart disease and cancer.

Chronic inflammation is a condition where the body's immune system is constantly active, leading to long-term damage to tissues and organs. Unlike acute inflammation, which is a normal response to injury or infection and typically resolves on its own, chronic inflammation can persist for months or even years. A variety of factors, including autoimmune disorders, infections, and lifestyle factors such as poor diet, lack of exercise, and chronic stress, can cause it.

Chronic inflammation has been linked to a variety of health conditions, including heart disease, cancer, diabetes, and neurodegenerative disorders. In some cases, chronic inflammation can also contribute to chronic pain and disability. Identifying and managing chronic inflammation is important for maintaining good health and preventing long-term complications.

What are the benefits of lab tests to detect, diagnose and monitor Chronic Inflammation? 

Lab tests can detect, diagnose, and monitor chronic inflammation. Here are some of the benefits of using lab tests to manage chronic inflammation:

  1. Early detection: Lab tests can help detect chronic inflammation early, which can lead to early intervention and better outcomes.
  2. Accurate diagnosis: Lab tests can help healthcare providers accurately diagnose chronic inflammation and differentiate it from other conditions with similar symptoms.
  3. Personalized treatment: Lab tests can help healthcare providers tailor treatment plans to the individual, taking into account their unique underlying causes and risk factors.
  4. Objective monitoring: Lab tests can provide objective measures to monitor chronic inflammation over time, allowing healthcare providers to adjust treatment plans as needed.
  5. Tracking response to treatment: Lab tests can track how well a patient responds to treatment for chronic inflammation, which can help healthcare providers adjust treatment plans and optimize outcomes.
  6. Preventative care: Regular monitoring of lab tests for chronic inflammation can help identify risk factors and enable preventative care, reducing the risk of complications.

In summary, lab tests can help with early detection, accurate diagnosis, personalized treatment, objective monitoring, tracking response to treatment, and preventative care for chronic inflammation, leading to better patient outcomes.

If you want to learn more about inflammation and the lab tests that can help you, click on the title of the articles below.

Check out the lab tests and articles below to learn more about how lab tests may be used to detect, diagnose, and monitor chronic Inflammation.

Ulta Lab Tests provides an affordable and convenient way to take charge of your health! Order your discounted lab tests online 24/7, and take advantage of our 2100 nationwide locations. With 30-minute in-and-out local testing, guaranteed low prices, and confidential results, Ulta Lab Tests is the perfect solution for anyone looking to get reliable lab test results quickly and easily. Plus, our dynamic charting feature allows you to track changes in your results over time. So why wait? Order your lab tests today!

Order your blood tests for inflammation from the selection below today and take charge of your health!


Name Matches

Important: This panel contains ANA Screen IFA with Reflex to Titer and Pattern #249 which is a Reflex test. If ANA Screen, IFA is positive, then ANA Titer and Pattern will be performed at an additional charge of $13.00


Important: This panel contains ANA Screen IFA with Reflex to Titer and Pattern #249 which is a Reflex test. If ANA Screen, IFA is positive, then ANA Titer and Pattern will be performed at an additional charge of $13.00

  • ANA Screen, IFA with Reflex to Titer and Pattern, IFA
  • Creatine Kinase (CK), Total
  • Homocysteine
  • C-Reactive Protein (CRP)
  • Sed Rate by Modified Westergren (ESR)
  • Uric Acid

Important: This panel contains ANA Screen IFA with Reflex to Titer and Pattern #249 which is a Reflex test. If ANA Screen, IFA is positive, then ANA Titer and Pattern will be performed at an additional charge of $13.00

  • Amylase
  • ANA Screen, IFA with Reflex to Titer and Pattern, IFA
  • Bilirubin, Direct
  • CBC (includes Differential and Platelets)
  • Comprehensive Metabolic Panel (CMP)
  • Creatine Kinase (CK), Total
  • Ferritin
  • Gamma Glutamyl Transferase (GGT)
  • Gliadin (Deamidated Peptide) Antibody (IgA)
  • Gliadin (Deamidated Peptide) Antibody (IgG)
  • Hemoglobin A1c (HgbA1C)
  • Homocysteine
  • hs-CRP
  • Immunofixation (IFE), Serum
  • Indican, Urine
  • Lactate Dehydrogenase (LD)
  • Lipase
  • Lipid Panel with Ratios
  • Omega-3 and -6 Fatty Acids, Plasma
  • Phosphate (as Phosphorus)
  • QuestAssureD™ 25-Hydroxyvitamin D (D2, D3), LC/MS/MS
  • Rheumatoid Factor
  • Thyroid Peroxidase Antibodies (TPO)
  • Uric Acid
  • Urinalysis (UA), Complete

Important: This panel contains ANA Screen IFA with Reflex to Titer and Pattern #249 which is a Reflex test. If ANA Screen, IFA is positive, then ANA Titer and Pattern will be performed at an additional charge of $13.00

  • ANA Screen, IFA with Reflex to Titer and Pattern, IFA
  • Creatine Kinase (CK), Total
  • Homocysteine
  • hs-CRP
  • Sed Rate by Modified Westergren (ESR)
  • Thyroid Peroxidase Antibodies (TPO)
  • Uric Acid

This panel contains Cortisol, A.M. #4212, which requires the patient to have their specimen collected between 7 a.m. - 9 a.m.

Important: This panel contains ANA Screen IFA with Reflex to Titer and Pattern #249 which is a Reflex test. If ANA Screen, IFA is positive, then ANA Titer and Pattern will be performed at an additional charge of $13.00

Ulta - Arthritis & Inflammation Deep Dive

This panel is a cure for WYSIATI – what-you-see-is-all-there-is. If all we do is measure a simple inflammation test, like the CRP, it is easy to fall into a trap of assuming inflammation is “arthritis”. But what if there is an infection or what if there is another reason for the pain or inflammation-like symptoms? Could it be a nutrient deficiency or excess? Could it be lack of recovery or abnormal stress hormone? This panel offers a remarkably deep dig into possible causes of inflammation, well beyond the typical tests ordered in practice. Sometimes our first impression is not the true answer. Results should be reviewed with you by a licensed healthcare provider.

  • ANA Screen, IFA with Reflex to Titer and Pattern, IFA #249
  • C-Reactive Protein (CRP) #4420
  • CBC (includes Differential and Platelets) #6399
  • Comprehensive Metabolic Panel (CMP) #10231
  • Cyclic Citrullinated Peptide (CCP) Antibody (IgG) #11173
  • Lipid Panel with Ratios #19543
  • Rheumatoid Factor #4418
  • Sed Rate by Modified Westergren (ESR) #809
  • Lyme Disease Antibodies (IgG, IgM), Immunoblot #8593
  • Cortisol, A.M. #4212
  • Creatine Kinase (CK), Total #374
  • DHEA Sulfate, Immunoassay #402
  • Ferritin #457
  • Hemoglobin A1c (HgbA1C) #496
  • Insulin #561
  • Testosterone, Free (Dialysis) and Total MS #36170
  • TSH #899
  • Vitamin B12 (Cobalamin) #927
  • Vitamin D, 25-Hydroxy, Total, Immunoassay #17306

DC - Comprehensive Inflammation Panel

Important: This panel contains ANA Screen IFA with Reflex to Titer and Pattern #249 which is a Reflex test. If ANA Screen, IFA is positive, then ANA Titer and Pattern will be performed at an additional charge of $13.00


OOL - Extensive Inflammation Panel

Important: This panel contains ANA Screen IFA with Reflex to Titer and Pattern #249 which is a Reflex test. If ANA Screen, IFA is positive, then ANA Titer and Pattern will be performed at an additional charge of $13.00


OOL - Extensive Inflammation Panel - without Sed Rate by Modified Westergren (ESR)

Important: This panel contains ANA Screen IFA with Reflex to Titer and Pattern #249 which is a Reflex test. If ANA Screen, IFA is positive, then ANA Titer and Pattern will be performed at an additional charge of $13.00


Description: The C-Reactive Protein test is used to identify and/or monitor inflammation in patients.

Also Known As: CRP Test, Inflammation test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

Average Processing Time: 2 to 3 days

When is a C-Reactive Protein test ordered?

When a person's medical history and signs and symptoms indicate that they may have a significant bacterial infection, a CRP test may be recommended. When a newborn displays signs of infection or when a person has sepsis symptoms including fever, chills, and rapid breathing and heart rate, it may be ordered.

It's also commonly requested on a regular basis to check illnesses like rheumatoid arthritis and lupus, and it's routinely repeated to see if medication is working. This is especially effective for inflammation issues because CRP levels decrease as inflammation decreases.

What does a C-Reactive Protein blood test check for?

C-reactive protein is a protein produced by the liver and released into the bloodstream within a few hours following tissue injury, infection, or other inflammatory event. After trauma or a heart attack, with active or uncontrolled autoimmune illnesses, and with acute bacterial infections like sepsis, markedly higher levels are reported. CRP levels can rise by a thousand-fold in response to inflammatory diseases, and their elevation in the blood can occur before pain, fever, or other clinical signs. The test detects inflammation caused by acute situations or monitors disease activity in chronic diseases by measuring the level of CRP in the blood.

The CRP test is not a diagnostic tool, although it can tell a doctor if inflammation is occurring. This information can be combined with other indicators like signs and symptoms, a physical exam, and other tests to establish whether someone has an acute inflammatory disorder or is having a flare-up of a chronic inflammatory disease. The health care provider may next do additional tests and treatment.

This CRP test should not be confused with the hs-CRP test. These are two separate CRP tests, each of which measures a different range of CRP levels in the blood for different purposes.

Lab tests often ordered with a C-Reactive Protein test:

  • Sed Rate (ESR)
  • Procalcitonin
  • ANA
  • Rheumatoid Factor
  • Complement

Conditions where a C-Reactive Protein test is recommended:

  • Arthritis
  • Autoimmune Disorders
  • Pelvic Inflammatory Disease
  • Inflammatory Bowel Disease
  • Sepsis
  • Vasculitis
  • Systemic Lupus Erythematosus
  • Meningitis and Encephalitis

Commonly Asked Questions:

How does my health care provider use a C-Reactive Protein test?

A health practitioner uses the C-reactive protein test to diagnose inflammation. CRP is an acute phase reactant, a protein produced by the liver and released into the bloodstream within a few hours following tissue injury, infection, or other inflammatory event. The CRP test is not a diagnostic test for any ailment, but it can be used in conjunction with other tests to determine whether a person has an acute or chronic inflammatory disorder.

CRP, for example, can be used to detect or track substantial inflammation in someone who is suspected of having an acute ailment like:

  • Sepsis is a dangerous bacterial infection.
  • An infection caused by a fungus
  • Inflammation of the pelvis

People with chronic inflammatory diseases can use the CRP test to detect flare-ups and/or see if their medication is working. Here are a few examples:

  • Inflammatory bowel disease
  • Arthritis, which can take many forms.
  • Autoimmune disorders, examples include lupus and vasculitis

CRP is occasionally requested in conjunction with an erythrocyte sedimentation rate, another inflammatory test. While the CRP test is not specific enough to diagnose an illness, it does serve as a broad marker for infection and inflammation, alerting doctors to the need for more testing and treatment. A variety of additional tests may be used to determine the source of inflammation, depending on the probable cause.

What do my C-Reactive Protein test results mean?

CRP levels in the blood are usually low.

CRP levels in the blood that are high or rising indicate the existence of inflammation, but they don't tell you where it is or what's causing it. A high CRP level can establish the presence of a severe bacterial infection in people who are suspected of having one. High levels of CRP in persons with chronic inflammatory disorders indicate a flare-up or that treatment isn't working.

When the CRP level rises and then falls, it indicates that the inflammation or infection is diminishing and/or responding to treatment.

Is there anything else I should know about C-Reactive Protein?

CRP levels can rise during pregnancy, as well as with the use of birth control tablets or hormone replacement therapy. Obese people have also been found to have higher CRP levels.

In the presence of inflammation, the erythrocyte sedimentation rate test will also rise; however, CRP rises first and then falls faster than the ESR.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.



Description: A High Sensitivity C-Reactive Protein test is a blood test used to accurately detect lower concentrations of the protein C-Reactive Protein. This test is used to evaluate your risk of cardiovascular and heart disease and to check for inflammation and many other issues.

Also Known As: hsCRP Test, Cardiac CRP Test, high sensitivity C-reactive protein Test, CRP Test for heart disease.

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

Average Processing Time: 3 to 4 days

When is a hs-CRP test ordered?

There is currently no consensus on when to get an hs-CRP test. It may be beneficial for treatment purposes to order hs-CRP for those that have kidney disease, diabetes or inflammatory disorders.

It's possible that hs-CRP will be tested again to confirm that a person has persistently low levels of inflammation.

What does a hs-CRP blood test check for?

C-reactive protein is a protein found in the blood that rises in response to infection and inflammation, as well as after trauma, surgery, or a heart attack. As a result, it's one of numerous proteins referred to as acute phase reactants. The high-sensitivity CRP test detects low levels of inflammation in the blood, which are linked to an increased risk of developing cardiovascular disease.

According to the American Heart Association, CVD kills more people in the United States each year than any other cause. A number of risk factors have been related to the development of CVD, including family history, high cholesterol, high blood pressure, being overweight or diabetic, however a considerable number of people with few or no recognized risk factors will also acquire CVD. This has prompted researchers to investigate for new risk variables that could be causing CVD or could be used to identify lifestyle modifications and/or treatments that could lower a person's risk.

High-sensitivity CRP is one of an increasing number of cardiac risk markers that may be used to assess an individual's risk. According to certain research, monitoring CRP with a highly sensitive assay can assist identify the risk level for CVD in persons who appear to be healthy. CRP levels at the higher end of the reference range can be measured with this more sensitive test. Even when cholesterol levels are within an acceptable range, these normal but slightly elevated levels of CRP in otherwise healthy persons might indicate the future risk of a heart attack, sudden cardiac death, stroke, and peripheral artery disease.

Lab tests often ordered with a hs-CRP test:

  • Complete Blood Count
  • Lipid Panel
  • Comprehensive Metabolic Panel
  • Lp-Pla2
  • Glucose

Conditions where a hs-CRP test is recommended:

  • Heart Attack
  • Heart Disease
  • Cardiovascular Disease
  • Stroke

How does my health care provider use a hs-CRP test?

A test for high-sensitivity C-reactive protein can be used to assess a person's risk of cardiovascular disease. It can be used in conjunction with a lipid profile or other cardiac risk markers, such as the lipoprotein-associated phospholipase A2 test, to provide further information regarding the risk of heart disease.

CRP is a protein that rises in the bloodstream as a result of inflammation. A continuous low level of inflammation, according to studies, plays a crucial role in atherosclerosis, the narrowing of blood vessels caused by the build-up of cholesterol and other lipids, which is typically linked to CVD. The hs-CRP test successfully detects low levels of C-reactive protein, indicating low but chronic inflammation, and so aids in predicting a person's risk of developing CVD.

Some specialists believe that high-sensitivity CRP is a good test for assessing CVD, heart attacks, and stroke risk, and that it can help in the evaluation process before a person gets one of these health problems. Some experts believe that combining a good marker for inflammation, such as hs-CRP, with a lipid profile is the best way to predict risk. This test has been recommended by several organizations for persons who are at a moderate risk of having a heart attack in the following ten years.

What does my hs-CRP test result mean?

Even when cholesterol levels are within an acceptable range, high levels of hs-CRP in otherwise healthy people have been found to predict an elevated risk of future heart attacks, strokes, sudden cardiac death, and/or peripheral arterial disease.

Higher hs-CRP concentrations indicate a higher risk of cardiovascular disease, while lower values indicate a lower risk. Individuals with hs-CRP values at the high end of the normal range are 1.5 to 4 times more likely than those with low levels of hs-CRP to have a heart attack.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: Sed Rate is a blood test that is used to measure the rate that red blood cells fall to the bottom of a test tube. The measurement is based how many cells fall within one hour. This test can be used to determine infection or inflammation.

Also Known As: Erythrocyte Sedimentation Rate Test, ESR Test, Sed Rate Test, Sedimentation Rate Test, Westergren Sedimentation Rate Test

Collection Method: Blood Draw

Specimen Type: Whole Blood

Test Preparation: No preparation required

Average Processing Time: 1 to 2 days

When is a Sed Rate test ordered?

When a condition or disease is believed to be causing inflammation in the body, an ESR may be ordered. Several inflammatory illnesses can be identified using this test. It may be requested, for example, if arthritis is suspected of producing joint inflammation and pain, or if inflammatory bowel disease is suspected of causing digestive symptoms.

When a person develops symptoms of polymyalgia rheumatica, systemic vasculitis, or temporal arteritis, such as headaches, neck or shoulder discomfort, anemia, pelvic pain, poor appetite, joint stiffness, and unexplained weight loss, a doctor may recommend an ESR. To follow the development of specific illnesses, the sed rate test can also be routinely ordered.

A health practitioner may wish to repeat the ESR before undertaking a full workup to look for disease.

What does a Sed Rate blood test check for?

The erythrocyte sedimentation rate is a test that evaluates the degree of inflammation in the body indirectly. The test evaluates the rate at which erythrocytes fall in a blood sample that has been placed in a tall, thin, vertical tube. The millimeters of clear fluid present at the upper portion of the tube after one hour are reported as the results.

When a drop of blood is inserted in a tube, the red blood cells settle out slowly, leaving just a small amount of transparent plasma. In the presence of an increased number of proteins, particularly proteins known as acute phase reactants, red cells settle at a faster pace. Inflammation raises the levels of acute phase reactants such as C-reactive protein and fibrinogen in the blood.

An inherent component of the immune system's response is inflammation. It could be chronic, showing symptoms over time with conditions like autoimmune illnesses or cancer, or acute, showing symptoms right away after a shock, injury, or infection.

The ESR is a non-specific indication that can rise in a number of disorders; it is not a diagnostic test. It provides you with a fundamental understanding of whether you have an inflammatory condition or not.

Given the availability of more recent, specialized tests, there have been reservations about the ESR's utility. The ESR test, on the other hand, is commonly used to diagnose and monitor temporal arteritis, systemic vasculitis, and polymyalgia rheumatica. Extremely high ESR values can aid in differentiating between rheumatic diseases. Furthermore, ESR may still be a viable alternative in some cases, such as when newer tests are unavailable in resource-constrained places or while monitoring the progression of a disease.

Lab tests often ordered with a Sed Rate test:

  • C-Reactive Protein
  • ANA
  • Rheumatoid Factor

Conditions where a Sed Rate test is recommended:

  • Vasculitis
  • Autoimmune Disorders
  • Rheumatoid Arthritis
  • Osteoarthritis
  • Celiac Disease
  • Lupus
  • Chronic Fatigue Syndrome
  • Juvenile Rheumatoid Arthritis
  • Inflammatory Bowel Disease

How does my health care provider use a Sed Rate test?

The erythrocyte sedimentation rate is a non-specific, very straightforward test that has been used for many years to detect inflammation associated with infections, malignancies, and autoimmune illnesses.

Because an elevated ESR often indicates the presence of inflammation, but does not tell the health practitioner where the inflammation is in the body or what is causing it, it is referred to as a non-specific test. Other illnesses besides inflammation may have an impact on an ESR. As a result, other tests, such C-reactive protein, are routinely paired with the ESR.

ESR is used to identify temporal arteritis, systemic vasculitis, and polymyalgia rheumatica, among other inflammatory illnesses. A notably elevated ESR is one of the crucial test results used to support the diagnosis.

This test can be used to track disease activity and treatment response in both of the disorders mentioned above, as well as several others including systemic lupus erythematosus.

What do my Sed Rate test results mean?

Because ESR is a non-specific inflammatory measure that is influenced by a variety of circumstances, it must be used in conjunction with other clinical findings, the individual's medical history, and the results of other laboratory tests. The health practitioner may be able to confirm or rule out a suspected illness if the ESR and clinical data match.

Without any signs of a specific condition, a single elevated ESR is usually insufficient to make a medical conclusion. A normal result does not, however, rule out inflammation or illness.

Inflammation, as well as anemia, infection, pregnancy, and aging, can cause a moderately raised ESR.

A severe infection with a rise in globulins, polymyalgia rheumatica, or temporal arteritis are common causes of an extremely high ESR. Depending on the person's symptoms, a health practitioner may employ various follow-up tests, such as blood cultures. Even if there is no inflammation, people with multiple myeloma or Waldenstrom's macroglobulinemia have extraordinarily high ESRs.

Rising ESRs may suggest increased inflammation or a poor response to therapy when monitoring a condition over time; normal or falling ESRs may indicate an adequate response to treatment.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Most Popular

Description: Homocysteine is an amino acid that is present in every cell. There is a small amount present as it is an amino acid that changes quickly into other needed products in the body.

Also Known As: Homocysteine Cardiac Risk Test, Homocysteine Blood Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: Fasting for at least 8 hours is preferred

Average Processing Time: 2 to 3 days

When is a Homocysteine test ordered?

When a doctor feels a person may be deficient in vitamin B12 or folate, he or she may request this test. At first, the signs and symptoms are vague and ambiguous. People who have an early deficit may be diagnosed before they show any visible symptoms. Other persons who are impacted may experience a range of moderate to severe symptoms, including:

  • Diarrhea
  • Dizziness
  • Weakness and exhaustion
  • Appetite loss
  • Paleness
  • Heart rate that is quite fast
  • Breathing problems
  • Tongue and mouth ache
  • In the feet, hands, arms, and legs, there is tingling, numbness, and/or burning

Depending on an individual's age and other risk factors, homocysteine may be requested as part of determining a person's risk of developing cardiovascular disease. It may also be ordered after a heart attack or stroke to aid in treatment planning.

When newborn screening identifies an increased level of methionine or if an infant or kid shows signs and symptoms of homocystinuria, this test may be ordered. Babies with this illness will appear normal at birth, but if left untreated, they will develop symptoms such as a displaced lens in the eye, a long slender build, long thin fingers, and skeletal abnormalities within a few years.

What does a Homocysteine blood test check for?

Homocysteine is an amino acid that is found in trace amounts in all of the body's cells. The body generally converts homocysteine to other compounds fast. Because vitamins B6, B12, and folate are required for homocysteine metabolism, elevated levels of the amino acid could indicate a vitamin deficit. The level of homocysteine in the blood is determined by this test.

Increased homocysteine levels have also been linked to an increased risk of coronary heart disease, stroke, peripheral vascular disease, and artery hardening. Homocysteine has been linked to cardiovascular disease risk through a variety of processes, including damage to blood vessel walls and support for the production of abnormal blood clots, but no direct linkages have been established. Several studies have also found no benefit or reduction in CVD risk with folic acid and B vitamin supplementation. The American Heart Association does not believe it to be a significant risk factor for heart disease at this time.

Homocysteine levels in the blood can also be dramatically increased by a rare genetic disorder known as homocystinuria. In homocystinuria, one of multiple genes is mutated, resulting in a defective enzyme that prevents the normal breakdown of methionine, the precursor of homocysteine. Methionine is one of the eleven necessary amino acids that the body cannot make and must therefore be obtained from food.

Homocysteine and methionine build up in the body without the necessary enzyme to break them down. Babies born with this condition appear normal at birth, but develop symptoms such as a long slender build, a dislocated lens in the eye, long thin fingers, osteoporosis, skeletal abnormalities, and a significantly increased risk of thromboembolism and atherosclerosis, which can lead to premature CVD within a few years.

In addition to intellectual disability, mental illness, a little low IQ, behavioral issues, and seizures, artery blockages can induce intellectual disability, mental illness, and seizures. Some of them can be avoided if homocystinuria is diagnosed early, which is why all states screen neonates for the disease.

Lab tests often ordered with a Homocysteine test:

  • Vitamin B12
  • Folate
  • MTHFR Mutation
  • Intrinsic Factor Antibody

Conditions where a Homocysteine test is recommended:

  • Vitamin B12 and Folate Deficiency
  • Heart Attack
  • Heart Disease
  • Stroke

How does my health care provider use a Homocysteine test?

The homocysteine test can be used in a variety of ways, including:

A homocysteine test may be ordered by a doctor to see if a person is deficient in vitamin B12 or folate. Before B12 and folate tests are abnormal, the homocysteine level may be raised. Homocysteine testing may be recommended by some health professionals in malnourished people, the elderly, who absorb less vitamin B12 from their diet, and people who have poor nutrition, such as drug or alcohol addicts.

For those at high risk of a stroke or heart attack, homocysteine testing may be requested as part of a health screening. It could be beneficial for someone who has a family history of coronary artery disease but no other recognized risk factors like smoking, high blood pressure, or obesity. However, because the specific role of homocysteine in the course of cardiovascular disease is unknown, the screening test's efficacy continues to be questioned.

If a health professional believes that an infant or kid has homocystinuria, tests for both urine and blood homocysteine can be utilized to assist diagnose the genetic condition. As part of their newborn screening in the United States, all babies are regularly tested for excess methionine, a symptom of homocystinuria. If a baby's test results are positive, urine and blood homocysteine tests are frequently used to confirm the results.

What do my homocysteine test results mean?

Homocysteine levels may be high in cases of suspected malnutrition, vitamin B12, or folate insufficiency. If a person does not consume enough B vitamins and/or folate through diet or supplements, the body may be unable to convert homocysteine into forms that the body can use. The level of homocysteine in the blood may rise in this scenario.

According to studies conducted in the mid- to late-1990s, those with high homocysteine levels have a substantially higher risk of heart attack or stroke than those with normal levels. The study of the relationship between excessive homocysteine levels and heart disease is still ongoing. However, considering that multiple trials studying folic acid and B vitamin supplementation have found no benefit or reduction in CVD risk, the use of homocysteine levels for risk assessment of cardiovascular disease, peripheral vascular disease, and stroke is now questionable.

A 2012 research study using various datasets, including 50,000 persons with coronary heart disease, called into question the possibility of a cause-and-effect relationship between homocysteine levels and heart disease. Although the American Heart Association recognizes a link between homocysteine levels and heart attack/stroke survival rates, it does not consider high homocysteine to be a major CVD risk factor.

While the AHA does not advocate for widespread use of folic acid and B vitamins to reduce the risk of heart attack and stroke, it does advocate for a balanced, nutritious diet and advises doctors to consider total risk factors as well as nutrition when treating cardiovascular disease.

Significantly elevated homocysteine concentrations in the urine and blood indicate that an infant is likely to have homocystinuria and need additional testing to confirm the reason of the increase.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Most Popular

Description: A Uric Acid test is a blood test that measures Uric Acid levels in your blood’s serum to screen for gout and monitor those undergoing chemotherapy or the development of kidney stones.

Also Known As: Serum Urate Test, UA Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

Average Processing Time: 1 to 2 days

When is a Uric Acid test ordered?

When a healthcare provider suspects a patient has a high uric acid level, a uric acid blood test is ordered. Gout is a prevalent form of arthritis that affects some people who have excessive uric acid levels. Gout causes discomfort in the joints, most commonly in the toes but also in other joints. When cancer patients are undergoing chemotherapy or radiation therapy, the test is also ordered to verify that their uric acid levels do not rise dangerously high.

When a person has recurring kidney stones or gout and has to be monitored for the production of these stones, a urine uric acid test may be ordered.

What does a Uric Acid blood test check for?

Purines are broken down to form uric acid. Purines are nitrogen-containing molecules that can be found in all of the body's cells, including DNA. This test determines how much uric acid is present in the blood or urine.

Cells break down as they age and die, releasing purines into the bloodstream. Purines can also be obtained through the digestion of specific foods, such as liver, anchovies, mackerel, dried beans and peas, and alcoholic beverages, particularly beer. The kidneys remove the majority of uric acid from the body, which is then excreted in the urine, with the remaining excreted in the stool.

When too much uric acid is created or not enough is eliminated from the body, it can build up in the body, causing blood levels to rise. Excess uric acid can induce gout, which is characterized by joint inflammation caused by the production of uric acid crystals in the joint fluid. Excess uric acid can also build up in tissues like the kidney, resulting in kidney stones or failure.

Too much uric acid in the body can occur as a result of creating too much, not removing enough, or a combination of both. Uric acid levels can rise as a result of an increase in cell death, as seen with some cancer treatments, or as a result of a rare hereditary tendency to make too much uric acid. Reduced uric acid removal is frequently caused by reduced renal function as a result of kidney disease.

Lab tests often ordered with a Uric Acid test:

  • Complete Blood Count
  • Iron Total and Total Iron binding capacity
  • Comprehensive Metabolic Panel
  • Lipid Panel
  • Urinalysis Complete

Conditions where a Uric Acid test is recommended:

  • Arthritis
  • Gout
  • Kidney Disease

How does my health care provider use a Uric Acid test?

The uric acid blood test is used to diagnose gout by detecting elevated levels of this molecule in the blood. The test is also used to monitor uric acid levels in persons who are receiving cancer treatment such as chemotherapy or radiation. Rapid cell turnover can lead to a rise in uric acid levels as a result of such treatment.

The uric acid urine test is used to detect the source of recurring kidney stones and to monitor the production of stones in persons with gout.

What does my Uric Acid result mean?

Hyperuricemia is defined as blood uric acid levels that are higher than usual. It can be caused by the body creating too much uric acid or the kidneys failing to eliminate enough uric acid from the body. To determine the reason of uric acid overproduction or reduced elimination, more research is needed.

Purine break-down is affected by a number of genetic inborn defects. Increased uric acid production can be caused by cancer that has spread from its original place, leukemias, multiple myeloma, and cancer chemotherapy. Reduced uric acid elimination can be caused by chronic renal illness, acidosis, pregnancy toxemia, and alcoholism.

Increased uric acid levels can cause crystals to develop in the joints, resulting in the joint inflammation and pain associated with gout. Uric acid can form crystals or kidney stones, which can cause kidney injury.

Low uric acid levels in the blood are significantly less common than high ones, and they are rarely a cause for concern. Although low uric acid levels have been linked to liver and renal disease, Fanconi syndrome, toxic exposure, and in rare cases, a hereditary metabolic deficiency, these problems are usually detected by other tests and symptoms rather than a single low uric acid result.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: A Lipid Panel is a blood test that measures your cholesterol levels to evaluate your risk of cardiovascular disease.

Also Known As: Lipid Profile Test, Lipid Test, Cholesterol Profile Test, Cholesterol Panel Test, Cholesterol Test, Coronary Risk Panel Test, lipid blood test, Lipid w/Ratios Test, Cholesterol Ratio test, blood cholesterol Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: Patient should be fasting 9-12 hours prior to collection.

Average Processing Time: 1 to 2 days

When is a Lipid Panel with Ratios test ordered?

A fasting lipid profile should be done about every five years in healthy persons who have no additional risk factors for heart disease. A single total cholesterol test, rather than a complete lipid profile, may be used for initial screening. If the screening cholesterol test result is high, a lipid profile will almost certainly be performed.

More regular testing with a full lipid profile is indicated if other risk factors are present or if earlier testing revealed a high cholesterol level.

Other risk factors, in addition to high LDL cholesterol, include:

  • Smoking
  • Obesity or being overweight
  • Unhealthy eating habits
  • Not getting enough exercise and being physically inactive
  • Older age
  • Having hypertension
  • Premature heart disease in the family
  • Having experienced a heart attack or having pre-existing heart disease

Diabetes or pre-diabetes is a condition in which a person has High HDL is a "negative risk factor," and its existence permits one risk factor to be removed from the total.

The American Academy of Pediatrics recommends routine lipid testing for children and young adults. Children and teenagers who are at a higher risk of developing heart disease as adults should be screened with a lipid profile earlier and more frequently. A family history of heart disease or health problems such as diabetes, high blood pressure, or being overweight are some of the risk factors, which are comparable to those in adults. According to the American Academy of Pediatrics, high-risk children should be examined with a fasting lipid profile between the ages of 2 and 8.

A lipid profile can also be done at regular intervals to assess the effectiveness of cholesterol-lowering lifestyle changes like diet and exercise, as well as pharmacological therapy like statins.

What does a Lipid Panel with Ratios blood test check for?

Lipids are a class of fats and fat-like compounds that are essential components of cells and energy sources. The level of certain lipids in the blood is measured by a lipid profile.

Lipoprotein particles transport two key lipids, cholesterol and triglycerides, through the bloodstream. Protein, cholesterol, triglyceride, and phospholipid molecules are all present in each particle. High-density lipoproteins, low-density lipoproteins, and very low-density lipoproteins are the three types of particles assessed with a lipid profile.

It's critical to keep track of and maintain optimal levels of these lipids in order to stay healthy. While the body creates the cholesterol required for normal function, some cholesterol is obtained from the diet. A high amount of cholesterol in the blood can be caused by eating too many foods high in saturated fats and trans fats or having a hereditary tendency. The excess cholesterol may form plaques on the inside walls of blood vessels. Plaques can constrict or block blood channel openings, causing artery hardening and raising the risk of a variety of health problems, including heart disease and stroke. Although the explanation for this is unknown, a high level of triglycerides in the blood is linked to an increased risk of developing cardiovascular disease.

A lipid profile consists of the following elements:

  • Cholesterol total
  • HDL Cholesterol - commonly referred to as "good cholesterol" since it eliminates excess cholesterol from the body and transports it to the liver for elimination.
  • LDL Cholesterol - commonly referred to as "bad cholesterol" because it deposits excess cholesterol in the walls of blood arteries, contributing to atherosclerosis.
  • Triglycerides
  • Ratio of LDL to HDL cholesterol

Lab tests often ordered with a Lipid Panel with Ratios test:

  • CBC (Blood Count Test) with Smear Review
  • Comprehensive Metabolic Panel
  • Direct LDL
  • VLDL
  • Lp-PLA2
  • Apolipoprotein A1
  • Apolipoprotein B
  • Lipoprotein (a)
  • Lipoprotein Fractionation Ion Mobility (LDL Particle Testing)

Conditions where a Lipid Panel with Ratios test is recommended:

  • Hypertension
  • Cardiovascular Disease
  • Heart Disease
  • Stroke

Commonly Asked Questions:

How does my health care provider use a Lipid Panel with Ratios test?

The lipid profile is used as part of a cardiac risk assessment to help determine an individual's risk of heart disease and, if there is a borderline or high risk, to help make treatment options.

Lipids are a class of fats and fat-like compounds that are essential components of cells and energy sources. It's critical to keep track of and maintain optimal levels of these lipids in order to stay healthy.

To design a therapy and follow-up strategy, the results of the lipid profile are combined with other recognized risk factors for heart disease. Treatment options may include lifestyle changes such as diet and exercise, as well as lipid-lowering drugs such as statins, depending on the results and other risk factors.

A normal lipid profile test measures the following elements:

  • Total cholesterol is a test that determines how much cholesterol is present in all lipoprotein particles.
  • HDL Cholesterol — measures hdl cholesterol in particles, sometimes referred to as "good cholesterol" since it eliminates excess cholesterol and transports it to the liver for elimination.
  • LDL Cholesterol – estimates the cholesterol in LDL particles; sometimes known as "bad cholesterol" since it deposits excess cholesterol in blood vessel walls, contributing to atherosclerosis. The amount of LDL Cholesterol is usually estimated using the total cholesterol, HDL Cholesterol, and triglycerides readings.
  • Triglycerides – triglycerides are measured in all lipoprotein particles, with the highest concentration in very-low-density lipoproteins.
  • As part of the lipid profile, several extra information may be presented. The results of the above-mentioned tests are used to determine these parameters.
  • VLDL Cholesterol — derived using triglycerides/5; this calculation is based on the typical VLDL particle composition.
  • Non-HDL Cholesterol - the result of subtracting total cholesterol from HDL Cholesterol.
  • Cholesterol/HDL ratio — total cholesterol to HDL Cholesterol ratio computed.

An expanded profile may include the amount and concentration of low-density lipoprotein particles. Rather than assessing the amount of LDL cholesterol, this test counts the number of LDL particles. This figure is thought to more accurately reflect the risk of heart disease in some persons.

What do my Lipid Panel test results mean?

Healthy lipid levels, in general, aid in the maintenance of a healthy heart and reduce the risk of heart attack or stroke. A health practitioner would analyze the results of each component of a lipid profile, as well as other risk factors, to assess a person's total risk of coronary heart disease, if therapy is required, and, if so, which treatment will best serve to reduce the person's risk of heart disease.

The Adult Treatment Panel III of the National Cholesterol Education Program published guidelines for measuring lipid levels and selecting treatment in 2002. The American College of Cardiology and the American Heart Association announced updated cholesterol therapy guidelines in 2013 to minimize the risk of cardiovascular disease in adults. These guidelines suggest a different treatment method than the NCEP guidelines. Cholesterol-lowering medications are now chosen based on the 10-year risk of atherosclerotic cardiovascular disease and other criteria, rather than on LDL-C or non-HDL-C objectives.

The revised guidelines include an evidence-based risk calculator for ASCVD that may be used to identify people who are most likely to benefit from treatment. It's for adults between the ages of 40 and 79 who don't have a heart condition. The computation takes into account a number of characteristics, including age, gender, race, total cholesterol, HDL-C, blood pressure, diabetes, and smoking habits. The new guidelines also suggest comparing therapeutic response to LDL-C baseline readings, with decrease criteria varying depending on the degree of lipid-lowering medication therapy.

Unhealthy lipid levels, as well as the presence of additional risk factors like age, family history, cigarette smoking, diabetes, and high blood pressure, may indicate that the person being examined needs to be treated.

The NCEP Adult Treatment Panel III guidelines specify target LDL cholesterol levels based on the findings of lipid testing and these other main risk factors. Individuals with LDL-C levels over the target limits will be treated, according to the guidelines.

According to the American Academy of Pediatrics, screening youths with risk factors for heart disease with a full, fasting lipid panel is advised. Fasting is not required prior to lipid screening in children who do not have any risk factors. For non-fasting lipid screening, non-high-density lipoprotein cholesterol is the preferred test. Non-HDL-C is computed by subtracting total cholesterol and HDL-C from total cholesterol and HDL-C.

Is there anything else I should know?

The measurement of triglycerides in people who haven't fasted is gaining popularity. Because most of the day, blood lipid levels reflect post-meal levels rather than fasting levels, a non-fasting sample may be more representative of the "usual" circulating level of triglyceride. However, because it is still unclear how to interpret non-fasting levels for assessing risk, the current recommendations for fasting before lipid tests remain unchanged.

A fasting lipid profile is usually included in a routine cardiac risk assessment. In addition, research into the utility of additional non-traditional cardiac risk markers, such as Lp-PLA2, is ongoing. A health care provider may use one or more of these markers to help determine a person's risk, but there is no consensus on how to use them and they are not widely available.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: Iron and Total Iron Binding Capacity is a blood panel used to determine iron levels in your blood, your body’s ability to transport iron, and help diagnose iron-deficiency and iron overload.

Also Known As: Serum Iron Test, Serum Fe Test, Iron Binding Capacity Test, IBC Test, Serum Iron-Binding Capacity Siderophilin Test, TIBC Test, UIBC Test, Iron Lab Test, TIBC Blood test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

Average Processing Time: 1 to 2 days

When is a Iron and Total Iron Binding Capacity test ordered?

When a doctor feels that a person's symptoms are caused by iron overload or poisoning, an iron and TIBC test, as well ferritin assays, may be done. These may include the following:

  • Joint discomfort
  • Weakness and exhaustion
  • Energy deficiency
  • Pain in the abdomen
  • Suffering from a lack of sexual desire
  • Problems with the heart

When a child is suspected of ingesting too many iron tablets, a serum iron test is required to detect the poisoning and to determine its severity.

A doctor may also request iron and TIBC when the results of a standard CBC test are abnormal, such as a low hematocrit or hemoglobin, or when a doctor suspects iron deficiency based on signs and symptoms such as:

  • Chronic tiredness/fatigue
  • Dizziness
  • Weakness
  • Headaches
  • Skin that is pale

What does a Iron and Total Iron Binding Capacity blood test check for?

Iron is a necessary ingredient for survival. It is a vital component of hemoglobin, the protein in red blood cells that binds and releases oxygen in the lungs and throughout the body. It is required in small amounts to help form normal red blood cells and is a critical part of hemoglobin, the protein in RBCs that binds oxygen in the lungs and releases it as blood circulates to other parts of the body.

By detecting numerous components in the blood, iron tests are ordered to determine the quantity of iron in the body. These tests are frequently ordered at the same time, and the data are analyzed together to determine the diagnosis and/or monitor iron deficiency or overload.

The level of iron in the liquid component of the blood is measured by serum iron.

Total iron-binding capacity is a measurement of all the proteins in the blood that may bind to iron, including transferrin.

The percentage of transferrin that has not yet been saturated is measured by the UIBC. Transferrin levels are also reflected in the UIBC.

Low iron levels can cause anemia, resulting in a decrease in the production of microcytic and hypochromic RBCs. Large amounts of iron, on the other hand, might be hazardous to the body. When too much iron is absorbed over time, iron compounds build up in tissues, particularly the liver, heart, and pancreas.

Normally, iron is absorbed from food and distributed throughout the body by binding to transferrin, a liver protein. About 70% of the iron delivered is used in the synthesis of hemoglobin in red blood cells. The rest is stored as ferritin or hemosiderin in the tissues, with minor amounts being utilized to make other proteins like myoglobin and enzymes.

Insufficient intake, limited absorption, or increased dietary requirements, as observed during pregnancy or with acute or chronic blood loss, are all signs of iron deficiency. Excessive intake of iron pills can cause acute iron overload, especially in children. Excessive iron intake, genetic hemochromatosis, multiple blood transfusions, and a few other disorders can cause chronic iron overload.

Lab tests often ordered with a Iron and Total Iron Binding Capacity test:

  • Complete Blood Count
  • Ferritin
  • Transferrin
  • Zinc Protoporphyrin

Conditions where a Iron and Total Iron Binding Capacity test is recommended:

  • Anemia
  • Hemochromatosis

How does my health care provider use a Iron and Total Iron Binding Capacity test?

The amount of circulating iron in the blood, the capacity of the blood to carry iron, and the amount of stored iron in tissues can all be determined by ordering one or more tests. Testing can also assist distinguish between different types of anemia

The level of iron in the blood is measured by serum iron.

Total iron-binding capacity is a measurement of all the proteins in the blood that may bind to iron, including transferrin. The TIBC test is a useful indirect assessment of transferrin because it is the predominant iron-binding protein. In response to the requirement for iron, the body generates transferrin. Transferrin levels rise when iron levels are low, and vice versa. About one-third of the binding sites on transferrin are used to transport iron in healthy humans.

The reserve capacity of transferrin, or the part of transferrin that has not yet been saturated, is measured by UIBC. Transferrin levels are also reflected in the UIBC.

The iron test result, as well as TIBC or UIBC, are used to calculate transferrin saturation. It represents the proportion of transferrin that is iron-saturated.

Ferritin is the major storage protein for iron inside cells, and serum ferritin represents the quantity of stored iron in the body.

These tests are frequently ordered together, and the results can assist the doctor figure out what's causing the iron deficit or overload.

Additional information about iron

A balance between the quantity of iron received into the body and the amount of iron lost is required to maintain normal iron levels. Because a tiny quantity of iron is lost each day, a deficiency will develop if too little iron is consumed. In healthy persons, there is usually enough iron to prevent iron deficiency and/or iron deficiency anemia, unless they eat a bad diet. There is a greater need for iron in some circumstances. People who have persistent gut bleeding or women who have heavy menstrual periods lose more iron than they should and can develop iron deficiency. Females who are pregnant or breastfeeding lose iron to their babies and may develop an iron shortage if they do not consume enough supplemental iron. Children may require additional iron, especially during periods of rapid growth, and may suffer iron shortage.

Low serum iron can also arise when the body is unable to adequately utilize iron. The body cannot correctly utilize iron to generate additional red cells in many chronic disorders, particularly malignancies, autoimmune diseases, and chronic infections. As a result, transferrin production slows, serum iron levels drop because little iron is absorbed from the stomach, and ferritin levels rise. Malabsorption illnesses like sprue syndrome can cause iron deficiency.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Most Popular

Description: Iron is a blood test used to determine iron levels in your blood, your body’s ability to transport iron, and help diagnose iron-deficiency and iron overload.

Also Known As: Serum Iron Test, Serum Fe Test, Iron Total Test, IBC Test, Iron Lab Test, Iron Blood test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: The patient should be fasting 9-12 hours prior to collection and collection should be done in the morning.

Average Processing Time: 1 to 2 days

When is an Iron Total test ordered?

When a doctor feels that a person's symptoms are caused by iron overload or poisoning, an iron test, as well ferritin assays, may be done. These may include the following:

  • Joint discomfort
  • Weakness and exhaustion
  • Energy deficiency
  • Pain in the abdomen
  • Suffering from a lack of sexual desire
  • Problems with the heart

When a child is suspected of ingesting too many iron tablets, a serum iron test is required to detect the poisoning and to determine its severity.

A doctor may also request iron testing when the results of a standard CBC test are abnormal, such as a low hematocrit or hemoglobin, or when a doctor suspects iron deficiency based on signs and symptoms such as:

  • Chronic tiredness/fatigue
  • Dizziness
  • Weakness
  • Headaches
  • Skin that is pale

What does an Iron Total blood test check for?

Iron is a necessary ingredient for survival and is a critical component of hemoglobin, the protein in red blood cells that binds oxygen in the lungs and releases it to other parts of the body. It is required in small amounts to help form normal red blood cells and is a critical part of hemoglobin, the protein in RBCs that binds oxygen in the lungs and releases it as blood circulates to other parts of the body.

By detecting numerous components in the blood, iron tests are ordered to determine the quantity of iron in the body. These tests are frequently ordered at the same time, and the data are analyzed together to determine the diagnosis and/or monitor iron deficiency or overload.

The level of iron in the liquid component of the blood is measured by serum iron.

Low iron levels can cause anemia, resulting in a decrease in the production of microcytic and hypochromic RBCs. Large amounts of iron, on the other hand, might be hazardous to the body. When too much iron is absorbed over time, iron compounds build up in tissues, particularly the liver, heart, and pancreas.

Normally, iron is absorbed from food and distributed throughout the body by binding to transferrin, a liver protein. About 70% of the iron delivered is used in the synthesis of hemoglobin in red blood cells. The rest is stored as ferritin or hemosiderin in the tissues, with minor amounts being utilized to make other proteins like myoglobin and enzymes.

Insufficient intake, limited absorption, or increased dietary requirements, as observed during pregnancy or with acute or chronic blood loss, are all signs of iron deficiency. Excessive intake of iron pills can cause acute iron overload, especially in children. Excessive iron intake, genetic hemochromatosis, multiple blood transfusions, and a few other disorders can cause chronic iron overload.

Lab tests often ordered with an Iron Total test:

  • Complete Blood Count
  • Ferritin
  • Transferrin
  • Zinc Protoporphyrin

Conditions where an Iron Total test is recommended:

  • Anemia
  • Hemochromatosis

How does my health care provider use an Iron Total test?

The amount of circulating iron in the blood, the capacity of the blood to carry iron, and the amount of stored iron in tissues can all be determined by ordering one or more tests. Testing can also assist distinguish between different types of anemia

The level of iron in the blood is measured by serum iron.

Total iron-binding capacity is a measurement of all the proteins in the blood that may bind to iron, including transferrin. The TIBC test is a useful indirect assessment of transferrin because it is the predominant iron-binding protein. In response to the requirement for iron, the body generates transferrin. Transferrin levels rise when iron levels are low, and vice versa. About one-third of the binding sites on transferrin are used to transport iron in healthy humans.

The reserve capacity of transferrin, or the part of transferrin that has not yet been saturated, is measured by UIBC. Transferrin levels are also reflected in the UIBC.

The iron test result, as well as TIBC or UIBC, are used to calculate transferrin saturation. It represents the proportion of transferrin that is iron-saturated.

Ferritin is the major storage protein for iron inside cells, and serum ferritin represents the quantity of stored iron in the body.

These tests are frequently ordered together, and the results can assist the doctor figure out what's causing the iron deficit or overload.

Additional information about iron

A balance between the quantity of iron received into the body and the amount of iron lost is required to maintain normal iron levels. Because a tiny quantity of iron is lost each day, a deficiency will develop if too little iron is consumed. In healthy persons, there is usually enough iron to prevent iron deficiency and/or iron deficiency anemia, unless they eat a bad diet. There is a greater need for iron in some circumstances. People who have persistent gut bleeding or women who have heavy menstrual periods lose more iron than they should and can develop iron deficiency. Females who are pregnant or breastfeeding lose iron to their babies and may develop an iron shortage if they do not consume enough supplemental iron. Children may require additional iron, especially during periods of rapid growth, and may suffer iron shortage.

Low serum iron can also arise when the body is unable to adequately utilize iron. The body cannot correctly utilize iron to generate additional red cells in many chronic disorders, particularly malignancies, autoimmune diseases, and chronic infections. As a result, transferrin production slows, serum iron levels drop because little iron is absorbed from the stomach, and ferritin levels rise. Malabsorption illnesses like sprue syndrome can cause iron deficiency.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Clinical Significance
Micronutrient, Iron - Serum measurements are useful in the diagnosis of iron deficiency and hemochromatosis.

Patients must be 18 years of age or greater.

Patient Preparation
Samples should be taken in the morning from patients in a fasting state, since iron values decrease by 30% during the course of the day and there can be significant interference from lipemia.
 

Reference Range(s)

  Male
(mcg/dL)
Female
(mcg/dL)
18-19 years 27-164 27-164
20-29 years 50-195  
20-49 years   40-90
>29 years 50-180   
>49 years   45-160

Reference range not available for individuals <18 years for this micronutrient test.


Clinical Significance
Micronutrients, Mineral/Element Panel

Patients must be 18 years of age or greater.

Overnight fasting is required.
Refrain from taking vitamins or mineral supplements 3 days before specimen collection and from eating legumes and leafy vegetables 2 days before specimen collection.

Includes

  • Micronutrient, Calcium
  • Micronutrient, Chromium, Blood
  • Micronutrient, Copper, Plasma
  • Micronutrient, Iron
  • Micronutrient, Magnesium, RBC
  • Micronutrient, Manganese, Blood
  • Micronutrient, Molybdenum, Blood
  • Micronutrient, Selenium, Blood
  • Micronutrient, Zinc, Plasma

Most Popular
Aids in the diagnosis of primary disease of skeletal muscle myocardial infarction and viral hepatitis.

Description: The Alpha-1-Antitrypsin Quantitative test measures levels of the alpha-1-antitrypsin protein in the blood.

Also Known As: Alpha1-antitrypsin Test, A1AT Test, AAT Test, Alpha 1 Antitrypsin Serum Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

Average Processing Time: 2 to 3 days

When is an Alpha-1-Antitrypsin test ordered?

When Alpha-1 antitrypsin tests may be prescribed:

  • Jaundice that lasts more than a week or two in a baby, an enlarged spleen, fluid buildup in the belly, persistent itching, and other symptoms of liver damage are present.
  • A person with COPD, elevated, sensitive skin lesions that develop into ulcers, granulomatosis with polyangiitis, or unexplained airway widening may be of any age.
  • Wheezing, a persistent cough, bronchitis, shortness of breath after exercise, and/or other emphysema symptoms often appear in people under the age of 40. This is particularly true when the person is not a smoker, has not been exposed to known lung irritants, and when the lung damage appears to be low in the lungs.
  • Someone has an alpha-1 antitrypsin deficiency that runs in their family.
  • A person wants to know how likely it is that their child would experience the same problems as their impacted family member.

The American Thoracic Society advised AAT testing in their 2003 guidelines when people were diagnosed with diseases like:

  • Young age for onset of emphysema and/or absence of clear risk factors for the condition, such as smoking
  • Bronchiectasis
  • difficult-to-treat asthma Unknown origin of liver disease
  • Panniculitis with necrosis

The Alpha-1 Foundation suggests AAT testing for all people with:

  • COPD
  • illness of the liver with no known cause
  • Panniculitis with necrosis
  • Polyangiitis and granulomatosis
  • mysterious bronchiectasis

The Alpha-1 Foundation also advises providing genetic counseling and AAT testing to people who have immediate or extended family members who have an aberrant AAT gene.

What does an Alpha-1-Antitrypsin blood test check for?

A blood protein called alpha-1 antitrypsin shields the lungs from harm from enzymes that have been activated. To help with the diagnosis of alpha-1 antitrypsin deficiency, laboratory tests detect the amount of AAT in blood or find aberrant forms of AAT that a person has inherited.

The most significant enzyme that AAT aids in inactivating is elastase. Elastase is a white blood cell termed a neutrophil that is created as part of the body's normal response to inflammation and injury. Elastase disassembles proteins so that the body can eliminate and recycle them. Elastase will also start to degrade and harm lung tissue if its activity is not controlled by AAT.

The gene that codes for AAT is inherited twice every person. The protease inhibitor gene is what it is known as. Because of the co-dominance of this gene, the body produces half of its AAT from each copy of the SERPINA1 gene. Less AAT and/or AAT with diminished function are produced if there is a change or mutation in one or both of the gene copies.

Alpha-1 antitrypsin deficiency is a condition that affects a person whose AAT production falls below 30% of normal. Emphysema, a progressive lung illness, is a serious danger for people with this disorder to experience in their early adult years. The lung damage likely to happen sooner and be more severe if they smoke or are exposed to occupational dust or fumes.

AAT that is dysfunctional of a particular sort builds up in the cells of the liver, where it is created. As AAT accumulates in these cells, it starts to produce aberrant protein chains, which then start to kill the cells and harm the liver. AAT-deficient neonates are jaundiced and suffer liver damage in about 10% of cases. These infants may need a liver transplant to survive in serious circumstances. The most frequent genetic cause of liver disease in children is presently AAT deficiency.

Adults with an AAT deficiency are more likely to develop liver cancer, cirrhosis, and chronic liver disease. Adults with AAT insufficiency rarely experience symptoms or indicators of liver damage, nevertheless. The hereditary gene mutation determines the amount and function of the AAT. The SERPINA1 gene contains more than 120 distinct alleles, however only a few of them are widespread. 90% of Americans have two copies of the typical, "wild type," M gene. S and Z are the aberrant genes that are most frequently found.

Lab tests often ordered with an Alpha-1-Antitrypsin test:

  • Protein Electrophoresis
  • Total Protein
  • Hepatic Function Panel
  • Blood Gases

Conditions where an Alpha-1-Antitrypsin test is recommended:

  • Lung Disease
  • Liver Disease
  • Asthma

How does my health care provider use an Alpha-1-Antitrypsin test?

When a patient has early onset emphysema or chronic obstructive pulmonary disease but no clear risk factors, such as smoking or exposure to lung irritants like dust or fumes, alpha-1 antitrypsin testing is utilized to help diagnose alpha-1 antitrypsin deficiency as the cause. It may also be applied to asthmatics who continue to have breathing difficulties despite receiving treatment.

Other symptoms of unexplained liver injury, such as prolonged jaundice, are also diagnosed with the use of testing. This can be done on anyone of any age, but is typically done on infants and young children.

A person with a family history of alpha-1 antitrypsin deficiency may also undergo testing to identify whether they have one or two copies of the SERPINA1 gene.

There are typically three different AAT exam kinds. One or more of these could be applied to assess a person:

  • The protein alpha-1 antitrypsin in blood is measured by alpha-1 antitrypsin.
  • Testing for the phenotype of alpha-1 antitrypsin assesses the quantity and kind of AAT being produced and contrasts it with typical patterns.
  • To determine if the typical wild type M allele or variant alleles are present in the SERPINA1 gene, alpha-1 antitrypsin genotyping testing can be utilized. This test won't find every variant, but it will find the most prevalent ones as well as those that might be frequent in a specific region or family. Other family members may be examined to determine their own risk of acquiring emphysema and/or liver dysfunction as well as the possibility that their children may inherit the condition after the sick person's SERPINA1 gene alleles have been determined.

Although gene sequencing for AAT is uncommon, it might be required to find uncommon alleles and make a precise diagnosis.

What do my Alpha-1-Antitrypsin test results mean?

Alpha-1 antitrypsin deficiency may be present in a person whose blood has a low amount of AAT, according to the test results. The risk of developing emphysema and other conditions linked to AAT insufficiency increases with decreasing AAT levels.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Most Popular

Description: Amylase is a blood test that is used to measure the amount of amylase in the blood’s serum. It is used to assess for and detect a pancreatic disorder.

Also Known As: Amy Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

Average Processing Time: 1 to 2 days

When is an Amylase test ordered?

When a person displays symptoms of a pancreatic disease, a blood amylase test may be conducted.

  • Abdominal or back pain that is severe
  • Fever
  • Appetite loss.
  • Nausea

A urine amylase test may be requested in conjunction with or after a blood amylase test. A health practitioner may conduct one or both of these tests on a regular basis to evaluate the success of treatment and see whether amylase levels are increasing or decreasing over time.

What does an Amylase blood test check for?

Amylase is one of numerous pancreatic enzymes that aid in carbohydrate digestion. This test detects the presence of amylase in the blood.

Amylase is produced from the pancreas into the duodenum, the first region of the small intestine, where it aids in the digestion of carbohydrates. Other organs, including the salivary glands, generate it as well.

Amylase is normally found in modest amounts in the blood and urine. Increased levels of amylase are released into the blood when pancreatic cells are harmed, as in pancreatitis, or when the pancreatic duct is obstructed by a gallstone or, in rare situations, a pancreatic tumor. This raises amylase levels in the blood.

Lab tests often ordered with an Amylase test:

  • Lipase
  • Trypsin
  • Trypsinogen

Conditions where an Amylase test is recommended:

  • Cystic Fibrosis
  • Pancreatic Cancer
  • Pancreatic Diseases
  • Pancreatitis

How does my health care provider use an Amylase test?

An amylase test is used to identify and track acute pancreatitis. It's frequently ordered in conjunction with a lipase test. It can also be used to detect and track chronic pancreatitis and other pancreas-related conditions.

A urine amylase test may be requested as well. Its level will usually correspond to blood amylase concentrations, but the rise and decrease will occur later. A urine creatinine clearance test may be ordered in conjunction with a urine amylase test to determine the ratio of amylase to creatinine filtered by the kidneys. Because poor kidney function might result in a decreased rate of amylase clearance, this ratio is used to assess renal function.

An amylase test on peritoneal fluid may be used to assist diagnose pancreatitis in some instances, such as when there is a buildup of fluid in the abdomen.

Amylase tests are often used to track the progress of pancreatic cancer treatment and after gallstone resection that has resulted in gallbladder attacks.

What do my Amylase test results mean?

A high level of amylase in the blood may suggest the presence of a pancreas problem.

Amylase levels in the blood often rise to 4 to 6 times higher than the highest reference value, also known as the upper limit of normal, in acute pancreatitis. The increase happens within 4 to 8 hours following a pancreas damage and usually lasts until the cause is effectively treated. In a few days, the amylase levels will return to normal.

Amylase levels in chronic pancreatitis are initially fairly increased, although they frequently decline over time as the pancreas deteriorates. Returning to normal levels may not signal that the source of damage has been rectified in this scenario. The size of the amylase rise does not indicate the severity of pancreatic illness.

Amylase levels may also be elevated in persons who have pancreatic duct obstruction or pancreatic cancer.

Urine amylase levels rise in lockstep with blood amylase levels and remain elevated for several days after blood levels have returned to normal.

A high amount of amylase in the peritoneal fluid can indicate acute pancreatitis, but it can also indicate other abdominal problems including a clogged intestine or poor blood supply to the intestines.

A low amylase level in the blood and urine of a person with pancreatitis symptoms could indicate that the amylase-producing cells in the pancreas have been permanently damaged. Reduced levels can also be caused by renal illness or pregnancy toxemia.

Increased blood amylase levels along with normal to low urine amylase levels could indicate the presence of a macroamylase, a harmless compound of amylase and other proteins that builds up in the bloodstream.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: An antinuclear antibody screening is a blood test that is going to look for a positive or negative result. If the result comes back as positive further test will be done to look for ANA Titer and Pattern. Antinuclear antibodies are associated with Lupus.

Also Known As: ANA Test, ANA Screen IFA with Reflex to Titer and pattern IFA Test, ANA with Reflex Test, Antinuclear Antibody Screen Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

Average Processing Time: 2 to 3 days

IMPORTANT Reflex Information: If ANA Screen, IFA is positive, then ANA Titer and Pattern will be performed at an additional charge of $13.00

When is an ANA Screen test ordered?

When someone exhibits signs and symptoms of a systemic autoimmune illness, the ANA test is requested. Symptoms of autoimmune illnesses can be vague and non-specific, and they can fluctuate over time, steadily deteriorate, or oscillate between periods of flare-ups and remissions.

What does an ANA Screen blood test check for?

Antinuclear antibodies are a type of antibody produced by the immune system when it is unable to differentiate between its own cells and foreign cells. Autoantibodies are antibodies that attack the body's own healthy cells, causing symptoms like tissue and organ inflammation, joint and muscle discomfort, and weariness. The moniker "antinuclear" comes from the fact that ANA specifically targets chemicals located in a cell's nucleus. The presence of these autoantibodies in the blood is detected by the ANA test.

The presence of ANA may be a sign of an autoimmune process, and it has been linked to a variety of autoimmune illnesses, the most common of which being systemic lupus erythematosus.

One of the most common tests used to detect an autoimmune disorder or rule out other conditions with comparable signs and symptoms is the ANA test. As a result, it's frequently followed by other autoantibody tests that can help establish a diagnosis. An ENA panel, anti-dsDNA, anti-centromere, and/or anti-histone test are examples of these.

Lab tests often ordered with an ANA Screen test:

  • ENA Panel
  • Sed Rate (ESR)
  • C-Reactive Protein
  • Complement
  • AMA
  • Centromere antibody
  • Histone Antibody

Conditions where an ANA Screen test is recommended:

  • Autoimmune Disorders
  • Lupus
  • Rheumatoid Arthritis
  • Sjogren Syndrome
  • Scleroderma

How does my health care provider use an ANA Screen test?

One of the most often performed tests to diagnose systemic lupus erythematosus is the antinuclear antibody test. It serves as the first step in the evaluation process for autoimmune diseases that might impact various body tissues and organs.

When a person's immune system fails to discriminate between their own cells and foreign cells, autoantibodies called ANA are created. They attack chemicals found in a cell's nucleus, causing organ and tissue damage.

ANA testing may be utilized in conjunction with or after other autoantibody tests, depending on a person's indications and symptoms and the suspected condition. Antibodies that target specific compounds within cell nuclei, such as anti-dsDNA, anti-centromere, anti-nucleolar, anti-histone, and anti-RNA antibodies, are detected by some of these tests, which are considered subsets of the general ANA test. In addition, an ENA panel can be utilized as a follow-up to an ANA.

These further tests are performed in addition to a person's clinical history to assist diagnose or rule out other autoimmune conditions such Sjögren syndrome, polymyositis, and scleroderma.

To detect ANA, various laboratories may employ different test procedures. Immunoassay and indirect fluorescent antibody are two typical approaches. The IFA is regarded as the gold standard. Some labs will test for ANA using immunoassay and then employ IFA to confirm positive or equivocal results.

An indirect fluorescent antibody is created by mixing a person's blood sample with cells attached to a slide. Autoantibodies in the blood bind to the cells and cause them to react. A fluorescent antibody reagent is used to treat the slide, which is then inspected under a microscope. The existence of fluorescence is observed, as well as the pattern of fluorescence.

Immunoassays—these procedures are frequently carried out using automated equipment, however they are less sensitive than IFA in identifying ANA.

Other laboratory tests linked to inflammation, such as the erythrocyte sedimentation rate and/or C-reactive protein, can be used to assess a person's risk of SLE or another autoimmune disease.

What do my ANA test results mean?

A positive ANA test indicates the presence of autoantibodies. This shows the presence of an autoimmune disease in someone who has signs and symptoms, but more testing is needed to make a definitive diagnosis.

Because ANA test results can be positive in persons who have no known autoimmune disease, they must be carefully assessed in conjunction with a person's indications and symptoms.

Because an ANA test can become positive before signs and symptoms of an autoimmune disease appear, determining the meaning of a positive ANA in a person who has no symptoms can take some time.

SLE is unlikely to be diagnosed with a negative ANA result. It is normally not required to repeat a negative ANA test right away; however, because autoimmune illnesses are episodic, it may be desirable to repeat the ANA test at a later date if symptoms persist.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Most Popular
Measurement of the levels of bilirubin is used in the diagnosis and treatment of liver, hemolytic, hematologic, and metabolic disorders, including hepatitis and gall bladder obstruction. The assessment of direct bilirubin is helpful in the differentiation of hepatic disorders. The increase in total bilirubin associated with obstructive jaundice is primarily due to the direct (conjugated) fraction. Both direct and indirect bilirubin are increased in the serum with hepatitis.

Clinical Significance

Used to diagnose inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, or to differentiate IBD from irritable bowel syndrome (IBS).

 

Collection Instructions

Collect undiluted feces in clean, dry sterile leak-proof container. Do not add fixative or preservative.

 



Inflammation is typically a normal part of the healing process. The process of inflammation activates your immune system and helps your body rid itself of toxins or pathogens that pose a threat. It can also prompt your body to repair damaged tissues. Acute inflammation is easily recognizable because of the short-term effects, but chronic inflammation often occurs at a low, consistent level that makes it almost undetectable without testing.

About Chronic Inflammation

Chronic inflammation occurs when your body continually reacts to some internal or external stressor by maintaining a low-grade immune response. Chronic inflammation can cause a breakdown in immune tolerance. Immune tolerance is your body’s ability to recognize certain substances as safe and non-threatening. Damaging your immune tolerance can cause your body to treat safe substances or objects like healthy cells as threats and attack them needlessly. 

Another side effect of chronic inflammation is an impaired immune system that can’t respond adequately to threats like viruses and bacteria. Since vaccines are meant to trigger an immune response, a weak immune system makes vaccinations less effective.

Risk Factors and Causes of Chronic Inflammation

Aging

To a certain extent, aging is an almost unavoidable risk factor for chronic inflammation. Cell senescence, the permanent end of a cell’s growth and ability to reproduce that occurs as people age, triggers the production of certain proteins linked to inflammation. However, there are also many lifestyle factors that put people at risk of developing chronic inflammation.

Diet

Research shows that diseases related to chronic inflammation, such as cardiovascular disease, cancer, and diabetes, are more common in Westernized countries than those that have more unprocessed and raw diets. Inflammatory diets that include large amounts of red meat, processed food, refined sugars, and high fructose corn syrup put individuals at risk of increased inflammation. 

A Sedentary Lifestyle

A processed, refined diet is one risk factor and cause of inflammation, but a lack of physical activity is also a cause. One small study found that people that were physically active had a lower circulation of inflammatory proteins and cholesterol than inactive people. 

Environmental Factors

In some cases, environmental factors can cause chronic inflammation. Toxic chemicals can irritate and cause inflammation in certain parts of the body, like the throat or skin. Smoking is a known risk factor for inflammation, but consistent exposure to secondhand smoke can also have a similar effect.

Oxidative Stress

Physical inactivity and a poor diet can put oxidative stress on your body. Oxidative stress is defined as an imbalance of oxidants and antioxidants in the body. Some oxidants that interact harmfully with other molecules and cause cell death and damaged proteins are called reactive oxygen species. Oxidants are normally released during acute inflammation, but chronic inflammation causes a buildup of these molecules that the body can’t adequately eliminate. A diet that’s low in antioxidants means a person can’t fight oxidative stress. 

Signs and Symptoms of Chronic Inflammation

The signs and symptoms of chronic inflammation are often almost unnoticeable because of their subtlety. If a person’s chronic inflammation has contributed to a disease like osteoporosis or cardiovascular disease, they may notice symptoms related to that disease and its progression.

Someone with chronic inflammation might have no visible symptoms. With lab testing, however, you can find invisible signs of chronic inflammation.

Lab Tests for Chronic Inflammation

Lab tests for chronic inflammation measure your blood's levels of certain inflammation markers by running your sample through a series of tests. One of these is an erythrocyte sedimentation rate or sed rate test. This test can indirectly determine your body’s current inflammatory response to stressors like a disease.

One sign of inflammation may be raised levels of C-reactive protein (CRP). The C-Reactive protein (CRP) test measures the amount of this protein, which is made by the liver. An increase in CRP levels in a person's bloodstream can indicate a condition that causes inflammation. A CRP test can detect inflammation caused by acute conditions and can help monitor the severity of disease in chronic conditions.

Chronic inflammation tests might also test for lipids like cholesterol, iron, and uric acid. These tests are the best way to determine your body’s inflammation. 

FAQs

How Can You Tell If You Have Chronic Inflammation?

The best way to tell if you have chronic inflammation is through a test. Symptoms can be undetectable and you may not feel any different. If you have inflammatory conditions related to chronic inflammation, like Crohn's Disease or ulcerative colitis, the symptoms of this disease are signs of inflammation.

How Do You Stop Chronic Inflammation?

Adopting a healthy lifestyle can reduce chronic inflammation. Increasing your physical activity and adopting a diet similar to the ones found in the Mediterranean region are two ways to support the anti-inflammatory process. Eating foods rich in antioxidants can help fend off oxidative stress, which can be a cause of inflammation.

Is There A Test for Chronic Inflammation?

Yes, Ulta Lab Tests offers tests for chronic inflammation that examine a number of substances in the blood, including gamma-glutamyl transferase (GGT)lipidsiron and C-reactive protein. Our chronic inflammation test also includes antinuclear antibodyCBCSED ratecomprehensive metabolic panel and rheumatoid factor tests.  

Benefits of Chronic Inflammation Testing with Ulta Lab Tests

Ulta Lab Tests offers highly accurate and reliable tests so you can make informed decisions about your health.

  • Secure and confidential results
  • No insurance or doctor's referral is needed
  • Affordable pricing
  • 100% satisfaction guarantee

Our chronic inflammation tests can help you determine your risk factor for illnesses associated with inflammation and give you another tool to stop the progression of inflammation before it becomes severe. Order your chronic inflammation lab tests today, and your results will be provided to you securely and confidentially online in 24 to 48 hours for most tests.

Take control of your health today with Ulta Lab Tests.