Cirrhosis

Liver Cirrhosis Tests and health information

Have you been experiencing pain, fatigue, and weight gain?

Find out with cirrhosis tests from Ulta Lab Tests to check for signs of liver damage and malfunction.

Cirrhosis is a condition in which the liver becomes inflamed or swollen and causes your liver to become damaged and scarred. This can lead to serious health problems, including jaundice, fatigue, weight loss, nausea, vomiting, and liver failure. If left untreated, it can lead to serious complications such as portal vein thrombosis and hepatocellular carcinoma. It can be caused by alcohol, hepatitis B and C, fatty liver disease, and other conditions. The lab tests for cirrhosis check for signs of liver malfunction, such as excess bilirubin, as well as for certain enzymes that may indicate liver damage.

The liver performs many functions, including blood clotting and breaking down toxins. When the organ becomes damaged or diseased, it may have trouble doing these jobs correctly, leading to life-threatening complications.

If you want to learn more about cirrhosis and lab testing that can help you, click on the title of the articles below.

Ulta Lab Tests takes the hassle and expense out of getting lab tests. We provide discounted lab tests online, with most tests returning results in as little as 24 to 48 hours. Plus, there's no need to pay an office fee or wait for a doctor; you can get your labs done locally and quickly at over 2,000 sites around the country. With our secure and confidential results, you'll be able to use dynamic charting to track changes in your health over time. Also, if you have an FSA or HSA card, you can use it to make your purchase.

We offer a range of lab tests to detect, diagnose and monitor cirrhosis. Take control of your health by ordering your blood tests from the list below. 


Name Matches

Description: A Comprehensive Metabolic Panel or CMP is a blood test that is a combination of a Basic Metabolic Panel, a Liver Panel, and electrolyte panel, and is used to screen for, diagnose, and monitor a variety of conditions and diseases such as liver disease, diabetes, and kidney disease. 

Also Known As: CMP, Chem, Chem-14, Chem-12, Chem-21, Chemistry Panel, Chem Panel, Chem Screen, Chemistry Screen, SMA 12, SMA 20, SMA 21, SMAC, Chem test

Collection Method: 

Blood Draw 

Specimen Type: 

Serum 

Test Preparation: 

9-12 hours fasting is preferred. 

When is a Comprehensive Metabolic Panel test ordered:  

A CMP is frequently requested as part of a lab test for a medical evaluation or yearly physical. A CMP test consists of many different tests that give healthcare providers a range of information about your health, including liver and kidney function, electrolyte balance, and blood sugar levels. To confirm or rule out a suspected diagnosis, abnormal test results are frequently followed up with other tests that provide a more in depth or targeted analysis of key areas that need investigating. 

What does a Comprehensive Metabolic Panel blood test check for? 

The complete metabolic panel (CMP) is a set of 20 tests that provides critical information to a healthcare professional about a person's current metabolic status, check for liver or kidney disease, electrolyte and acid/base balance, and blood glucose and blood protein levels. Abnormal results, particularly when they are combined, can suggest a problem that needs to be addressed. 

The following tests are included in the CMP: 

  • Albumin: this is a measure of Albumin levels in your blood. Albumin is a protein made by the liver that is responsible for many vital roles including transporting nutrients throughout the body and preventing fluid from leaking out of blood vessels. 

  • Albumin/Globulin Ratio: this is a ratio between your total Albumin and Globulin  

  • Alkaline Phosphatase: this is a measure of Alkaline phosphatase or ALP in your blood. Alkaline phosphatase is a protein found in all body tissues, however the ALP found in blood comes from the liver and bones. Elevated levels are often associated with liver damage, gallbladder disease, or bone disorder. 

  • Alt: this is a measure of Alanine transaminase or ALT in your blood. Alanine Aminotransferase is an enzyme found in the highest amounts in the liver with small amounts in the heart and muscles. Elevated levels are often associated with liver damage. 

  • AST: this is a measure of Aspartate Aminotransferase or AST. Aspartate Aminotransferase is an enzyme found mostly in the heart and liver, with smaller amounts in the kidney and muscles. Elevated levels are often associated with liver damage. 

  • Bilirubin, Total: this is a measure of bilirubin in your blood. Bilirubin is an orange-yellowish waste product produced from the breakdown of heme which is a component of hemoglobin found in red blood cells. The liver is responsible for removal of bilirubin from the body. 

  • Bun/Creatinine Ratio: this is a ratio between your Urea Nitrogen (BUN) result and Creatinine result.  

  • Calcium: this is a measurement of calcium in your blood. Calcium is the most abundant and one of the most important minerals in the body as it essential for proper nerve, muscle, and heart function. 

  • Calcium: is used for blood clot formation and the formation and maintenance of bones and teeth. 

  • Carbon Dioxide: this is a measure of carbon dioxide in your blood. Carbon dioxide is a negatively charged electrolyte that works with other electrolytes such as chloride, potassium, and sodium to regulate the body’s acid-base balance and fluid levels.  

  • Chloride: this is a measure of Chloride in your blood. Chloride is a negatively charged electrolyte that works with other electrolytes such as potassium and sodium to regulate the body’s acid-base balance and fluid levels. 

  • Creatinine: this is a measure of Creatinine levels in your blood. Creatinine is created from the breakdown of creatine in your muscles and is removed from your body by the kidneys. Elevated creatinine levels are often associated with kidney damage. 

  • Egfr African American: this is a measure of how well your kidneys are functioning. Glomeruli are tiny filters in your kidneys that filter out waste products from your blood for removal while retaining important substances such as nutrients and blood cells. 

  • Egfr Non-Afr. American: this is a measure of how well your kidneys are functioning. Glomeruli are tiny filters in your kidneys that filter out waste products from your blood for removal while retaining important substances such as nutrients and blood cells. 

  • Globulin: this is a measure of all blood proteins in your blood that are not albumin. 

  • Glucose: this is a measure of glucose in your blood. Glucose is created from the breakdown of carbohydrates during digestion and is the body’s primary source of energy. 

  • Potassium: this is a measure of Potassium in your blood. Potassium is an electrolyte that plays a vital role in cell metabolism, nerve and muscle function, and transport of nutrients into cells and removal of wastes products out of cells. 

  • Protein, Total: this is a measure of total protein levels in your blood. 
    Sodium: this is a measure of Sodium in your blood. Sodium is an electrolyte that plays a vital role in nerve and muscle function. 

  • Sodium: this is a measure of sodium in your blood's serum. Sodium is a vital mineral for nerve and muscle cell function.

  • Urea Nitrogen (Bun): this is a measure of Urea Nitrogen in your blood, also known as Blood UreaNitrogen (BUN). Urea is a waste product created in the liver when proteins are broken down into amino acids. Elevated levels are often associated with kidney damage. 

Lab tests often ordered with a Comprehensive Metabolic Panel test: 

  • Complete Blood Count with Differential and Platelets
  • Iron and Total Iron Binding Capacity
  • Lipid Panel
  • Vitamin B12 and Folate
  • Prothrombin with INR and Partial Thromboplastin Times
  • Sed Rate (ESR)
  • C-Reactive Protein

Conditions where a Comprehensive Metabolic Panel test is recommended: 

  • Diabetes
  • Kidney Disease
  • Liver Disease
  • Hypertension

Commonly Asked Questions: 

How does my health care provider use a Comprehensive Metabolic Panel test? 

The comprehensive metabolic panel (CMP) is a broad screening tool for assessing organ function and detecting diseases like diabetes, liver disease, and kidney disease. The CMP test may also be requested to monitor known disorders such as hypertension and to check for any renal or liver-related side effects in persons taking specific drugs. If a health practitioner wants to follow two or more separate CMP components, the full CMP might be ordered because it contains more information. 

What do my Comprehensive Metabolic Panel test results mean? 

The results of the tests included in the CMP are usually analyzed together to look for patterns. A single abnormal test result may indicate something different than a series of abnormal test findings. A high result on one of the liver enzyme tests, for example, is not the same as a high result on several liver enzyme tests. 

Several sets of CMPs, frequently performed on various days, may be examined to gain insights into the underlying disease and response to treatment, especially in hospitalized patients. 

Out-of-range findings for any of the CMP tests can be caused by a variety of illnesses, including kidney failure, breathing issues, and diabetes-related complications, to name a few. If any of the results are abnormal, one or more follow-up tests are usually ordered to help determine the reason and/or establish a diagnosis. 

Is there anything else I should know? 

A wide range of prescription and over-the-counter medications can have an impact on the results of the CMP's components. Any medications you're taking should be disclosed to your healthcare professional. Similarly, it is critical to provide a thorough history because many other circumstances can influence how your results are interpreted. 

What's the difference between the CMP and the BMP tests, and why would my doctor choose one over the other? 

The CMP consists of 14 tests, while the basic metabolic panel (BMP) is a subset of those with eight tests. The liver (ALP, ALT, AST, and bilirubin) and protein (albumin and total protein) tests are not included. If a healthcare provider wants a more thorough picture of a person's organ function or to check for specific illnesses like diabetes or liver or kidney disease, he or she may prescribe a CMP rather than a BMP. 

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.

Please note the following regarding BUN/Creatinine ratio: 

The lab does not report the calculation for the BUN/Creatinine Ratio unless one or both biomarkers’ results fall out of the published range. 

If you still wish to see the value, it's easy to calculate. Simply take your Urea Nitrogen (BUN) result and divide it by your Creatinine result.  

As an example, if your Urea Nitrogen result is 11 and your Creatinine result is 0.86, then you would divide 11 by 0.86 and get a BUN/Creatinine Ratio result of 12.79. 


Most Popular

Description: The Hepatic Function Panel is a blood test that measures multiple markers to evaluate the health of your liver.

Also Known As: Liver Profile Test, Liver Function Test, LFT, Liver Enzyme Test, Liver Test, Liver Blood Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is a Hepatic Function Panel test ordered?

When someone is at risk for liver dysfunction, a liver panel, or one or more of its components, may be requested. Here are a few examples:

  • People who are taking drugs that could harm their liver
  • Those who are alcoholics or who use a lot of alcohol
  • Those who have a history of hepatitis virus exposure, either known or suspected
  • Individuals with a history of liver illness in their families
  • Overweight people, especially those with diabetes and/or high blood pressure

When a person exhibits signs and symptoms of liver disease, a liver panel may be done; however, most people with liver disease do not have any of these symptoms until the disease has been present for years or is very severe. Here are a few examples:

  • Weakness and exhaustion
  • Appetite loss.
  • Vomiting and nausea
  • Swelling and/or pain in the abdomen
  • Jaundice
  • Urine that is dark in color and feces that is light in color
  • Pruritus
  • Diarrhea

To make a diagnosis, no single collection of liver tests is usually used. Several liver panels are frequently done over the course of a few days or weeks to aid in determining the source of the liver illness and assessing its severity.

When liver illness is discovered, the liver panel or one or more of its components can be used to monitor it on a regular basis over time. A liver panel may be conducted on a regular basis to assess the efficacy of treatment for the liver condition.

What does a Hepatic Function Panel blood test check for?

A liver panel is a collection of tests used to diagnose, evaluate, and track the progression of liver illness or damage. The liver is one of the largest organs in the body, and it is placed behind the lower ribs in the upper right section of the belly. Drugs and substances that are detrimental to the body are metabolized and detoxified by the liver. It makes blood clotting factors, proteins, and enzymes, as well as regulating hormone levels and storing vitamins and minerals. Bile, a fluid produced by the liver, is delivered to the small intestine via ducts to aid in fat digestion or to the gallbladder to be stored and concentrated for later use.

Inflammation, scarring, bile duct blockages, liver tumors, and liver dysfunction can all be caused by a range of disorders and infections that cause acute or chronic liver damage. Toxins, alcohol, narcotics, and some herbal medications can all be dangerous. Before signs like jaundice, dark urine, light-colored feces, itching, nausea, exhaustion, diarrhea, and unexplained weight loss or increase appear, there may be considerable liver damage. To reduce damage and preserve liver function, early identification is critical.

The liver panel assesses the enzymes, proteins, and chemicals generated, processed, or removed by the liver, as well as those that are altered by liver injury. Some are produced by damaged liver cells, while others indicate a reduction in the liver's ability to execute one or more activities. When these tests are performed combined, they provide a picture of a person's liver's health, an indication of the severity of any liver injury, changes in liver status over time, and a starting point for further diagnostic testing.

Lab tests often ordered with a Hepatic Function Panel test:

  • GGT
  • Prothrombin Time and International Normalized Ratio
  • LD
  • Hepatitis A Testing
  • Hepatitis B Testing
  • Hepatitis C Testing
  • Emergency and Overdose Drug Testing
  • Ethanol
  • ANA
  • Smooth Muscle Antibody
  • Anti-LKM-1
  • Drugs of Abuse Testing
  • Copper
  • Ceruloplasmin
  • DCP
  • AFP Tumor Markers
  • Alpha-1
  • Antitrypsin
  • Acetaminophen
  • Ammonia

Conditions where a Hepatic Function Panel test is recommended:

  • Liver Disease
  • Jaundice
  • Hepatitis
  • Hemochromatosis
  • Wilson Disease
  • Cirrhosis

Commonly Asked Questions:

How does my health care provider use a Hepatic Function Panel test?

A liver panel can be performed to check for damage to the liver, especially if someone has an illness or is taking a medication that could harm the liver. For regular screening, a comprehensive metabolic panel, which is commonly conducted as part of a general health checkup, may be ordered instead of a liver panel. The majority of the liver panel is included in this group of tests, as well as other tests that evaluate other organs and systems in the body.

If a person has signs and symptoms that indicate suspected liver malfunction, a liver panel or one or more of its component tests may be done to assist identify liver disease. If a person has a known illness or liver disease, testing may be done at regular intervals to assess the liver's health and the efficiency of any therapies. To evaluate and monitor a jaundiced newborn, a variety of bilirubin tests may be ordered.

Abnormal tests on a liver panel may necessitate a repeat study of one or more tests, or the entire panel, to evaluate if the elevations or declines continue, and/or additional testing to discover the etiology of the liver dysfunction.

Typically, a panel consists of numerous tests performed simultaneously on a blood sample.

What do my Liver Panel Test results mean?

The findings of a liver panel test are not diagnostic of a specific condition; rather, they show that the liver may be malfunctioning. Abnormal liver test results in a person who has no symptoms or recognized risk factors may signal a transitory liver injury or reflect something going on elsewhere in the body, such as the skeletal muscles, pancreas, or heart. It could potentially signal the presence of early liver disease, necessitating more testing and/or periodic monitoring.

The results of liver panels are generally compared. Several sets of results from tests conducted over several days or weeks are sometimes analyzed together to see if a pattern emerges. Each person's test findings will be unique, and they will most likely alter over time. A healthcare professional examines the combined findings of liver tests to learn more about the underlying disease. Further testing is frequently required to discover the cause of the liver damage and/or illness.

Abnormal test results may signal a need to review a person's dosage or medication choice if they are taking medicines that may impact their liver. When a person with liver disease is being monitored, the healthcare provider will look at the findings of the liver panel together to see if liver function or damage is getting worse or better. Increased abnormalities in bilirubin, albumin, and/or PT, for example, may suggest a decline in liver function, whereas steady or improved findings may indicate liver function preservation or improvement.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: A CBC or Complete Blood Count with Differential and Platelets test is a blood test that measures many important features of your blood’s red and white blood cells and platelets. A Complete Blood Count can be used to evaluate your overall health and detect a wide variety of conditions such as infection, anemia, and leukemia. It also looks at other important aspects of your blood health such as hemoglobin, which carries oxygen. 

Also Known As: CBC test, Complete Blood Count Test, Total Blood Count Test, CBC with Differential and Platelets test, Hemogram test  

Collection Method: Blood Draw 

Specimen Type: Whole Blood 

Test Preparation: No preparation required 

When is a Complete Blood Count test ordered?  

The complete blood count (CBC) is an extremely common test. When people go to the doctor for a standard checkup or blood work, they often get a CBC. Suppose a person is healthy and their results are within normal ranges. In that case, they may not need another CBC unless their health condition changes, or their healthcare professional believes it is necessary. 

When a person exhibits a variety of signs and symptoms that could be connected to blood cell abnormalities, a CBC may be done. A health practitioner may request a CBC to help diagnose and determine the severity of lethargy or weakness, as well as infection, inflammation, bruises, or bleeding. 

When a person is diagnosed with a disease that affects blood cells, a CBC is frequently done regularly to keep track of their progress. Similarly, if someone is being treated for a blood condition, a CBC may be performed on a regular basis to see if the treatment is working. 

Chemotherapy, for example, can influence the generation of cells in the bone marrow. Some drugs can lower WBC counts in the long run. To monitor various medication regimens, a CBC may be required on a regular basis. 

What does a Complete Blood Count test check for? 

The complete blood count (CBC) is a blood test that determines the number of cells in circulation. White blood cells (WBCs), red blood cells (RBCs), and platelets (PLTs) are three types of cells suspended in a fluid called plasma. They are largely created and matured in the bone marrow and are released into the bloodstream when needed under normal circumstances. 

A CBC is mainly performed with an automated machine that measures a variety of factors, including the number of cells present in a person's blood sample. The findings of a CBC can reveal not only the quantity of different cell types but also the physical properties of some of the cells. 

Significant differences in one or more blood cell populations may suggest the presence of one or more diseases. Other tests are frequently performed to assist in determining the reason for aberrant results. This frequently necessitates visual confirmation via a microscope examination of a blood smear. A skilled laboratory technician can assess the appearance and physical features of blood cells, such as size, shape, and color, and note any anomalies. Any extra information is taken note of and communicated to the healthcare provider. This information provides the health care provider with further information about the cause of abnormal CBC results. 

The CBC focuses on three different types of cells: 

WBCs (White Blood Cells) 

The body uses five different types of WBCs, also known as leukocytes, to keep itself healthy and battle infections and other types of harm. The five different leukocytes are eosinophiles, lymphocytes, neutrophiles, basophils, and monocytes. They are found in relatively steady numbers in the blood. Depending on what is going on in the body, these values may momentarily rise or fall. An infection, for example, can cause the body to manufacture more neutrophils in order to combat bacterial infection. The amount of eosinophils in the body may increase as a result of allergies. A viral infection may cause an increase in lymphocyte production. Abnormal (immature or mature) white cells multiply fast in certain illness situations, such as leukemia, raising the WBC count. 

RBCs (Red Blood Cells) 

The bone marrow produces red blood cells, also known as erythrocytes, which are transferred into the bloodstream after maturing. Hemoglobin, a protein that distributes oxygen throughout the body, is found in these cells. Because RBCs have a 120-day lifespan, the bone marrow must constantly manufacture new RBCs to replace those that have aged and disintegrated or have been lost due to hemorrhage. A variety of diseases, including those that cause severe bleeding, can alter the creation of new RBCs and their longevity. 

The CBC measures the number of RBCs and hemoglobin in the blood, as well as the proportion of RBCs in the blood (hematocrit), and if the RBC population appears to be normal. RBCs are generally homogeneous in size and shape, with only minor differences; however, considerable variances can arise in illnesses including vitamin B12 and folate inadequacy, iron deficiency, and a range of other ailments. Anemia occurs when the concentration of red blood cells and/or the amount of hemoglobin in the blood falls below normal, resulting in symptoms such as weariness and weakness. In a far smaller percentage of cases, there may be an excess of RBCs in the blood (erythrocytosis or polycythemia). This might obstruct the flow of blood through the tiny veins and arteries in extreme circumstances. 

Platelets 

Platelets, also known as thrombocytes, are small cell fragments that aid in the regular clotting of blood. A person with insufficient platelets is more likely to experience excessive bleeding and bruises. Excess platelets can induce excessive clotting or excessive bleeding if the platelets are not operating properly. The platelet count and size are determined by the CBC. 

Lab tests often ordered with a Complete Blood Count test: 

  • Reticulocytes
  • Iron and Total Iron Binding Capacity
  • Basic Metabolic Panel
  • Comprehensive Metabolic Panel
  • Lipid Panel
  • Vitamin B12 and Folate
  • Prothrombin with INR and Partial Thromboplastin Times
  • Sed Rate (ESR)
  • C-Reactive Protein
  • Epstein-Barr Virus
  • Von Willebrand Factor Antigen

Conditions where a Complete Blood Count test is recommended: 

  • Anemia
  • Aplastic Anemia
  • Iron Deficiency Anemia
  • Vitamin B12 and Folate Deficiency
  • Sickle Cell Anemia
  • Heart Disease
  • Thalassemia
  • Leukemia
  • Autoimmune Disorders
  • Cancer
  • Bleeding Disorders
  • Inflammation
  • Epstein-Barr Virus
  • Mononucleosis

Commonly Asked Questions: 

How does my health care provider use a Complete Blood Count test? 

The complete blood count (CBC) is a common, comprehensive screening test used to measure a person's overall health status.  

What do my Complete Blood Count results mean? 

A low Red Blood Cell Count, also known as anemia, could be due many different causes such as chronic bleeding, a bone marrow disorder, and nutritional deficiency just to name a few. A high Red Blood Cell Count, also known as polycythemia, could be due to several conditions including lung disease, dehydration, and smoking. Both Hemoglobin and Hematocrit tend to reflect Red Blood Cell Count results, so if your Red Blood Cell Count is low, your Hematocrit and Hemoglobin will likely also be low. Results should be discussed with your health care provider who can provide interpretation of your results and determine the appropriate next steps or lab tests to further investigate your health. 

What do my Differential results mean? 

A low White Blood Cell count or low WBC count, also known as leukopenia, could be due to a number of different disorders including autoimmune issues, severe infection, and lymphoma. A high White Blood Cell count, or high WBC count, also known as leukocytosis, can also be due to many different disorders including infection, leukemia, and inflammation. Abnormal levels in your White Blood Cell Count will be reflected in one or more of your different white blood cells. Knowing which white blood cell types are affected will help your healthcare provider narrow down the issue. Results should be discussed with your health care provider who can provide interpretation of your results and determine the appropriate next steps or lab tests to further investigate your health. 

What do my Platelet results mean? 

A low Platelet Count, also known as thrombocytopenia, could be due to a number of different disorders including autoimmune issues, viral infection, and leukemia. A high Platelet Count, also known as Thrombocytosis, can also be due to many different disorders including cancer, iron deficiency, and rheumatoid arthritis. Results should be discussed with your health care provider who can provide interpretation of your results and determine the appropriate next steps or lab tests to further investigate your health. 

NOTE: Only measurable biomarkers will be reported. Certain biomarkers do not appear in healthy individuals. 

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.

Reflex Parameters for Manual Slide Review
  Less than  Greater Than 
WBC  1.5 x 10^3  30.0 x 10^3 
Hemoglobin  7.0 g/dL  19.0 g/dL 
Hematocrit  None  75%
Platelet  100 x 10^3  800 x 10^3 
MCV  70 fL  115 fL 
MCH  22 pg  37 pg 
MCHC  29 g/dL  36.5 g/dL 
RBC  None  8.00 x 10^6 
RDW  None  21.5
Relative Neutrophil %  1% or ABNC <500  None 
Relative Lymphocyte %  1% 70%
Relative Monocyte %  None  25%
Eosinophil  None  35%
Basophil  None  3.50%
     
Platelet  <75 with no flags,
>100 and <130 with platelet clump flag present,
>1000 
Instrument Flags Variant lymphs, blasts,
immature neutrophils,  nRBC’s, abnormal platelets,
giant platelets, potential interference
     
The automated differential averages 6000+ cells. If none of the above parameters are met, the results are released without manual review.
CBC Reflex Pathway

Step 1 - The slide review is performed by qualified Laboratory staff and includes:

  • Confirmation of differential percentages
  • WBC and platelet estimates, when needed
  • Full review of RBC morphology
  • Comments for toxic changes, RBC inclusions, abnormal lymphs, and other
  • significant findings
  • If the differential percentages agree with the automated counts and no abnormal cells are seen, the automated differential is reported with appropriate comments

Step 2 - The slide review is performed by qualified Laboratory staff and includes: If any of the following are seen on the slide review, Laboratory staff will perform a manual differential:

  • Immature, abnormal, or toxic cells
  • nRBC’s
  • Disagreement with automated differential
  • Atypical/abnormal RBC morphology
  • Any RBC inclusions

Step 3 If any of the following are seen on the manual differential, a Pathologist will review the slide:

  • WBC<1,500 with abnormal cells noted
  • Blasts/immature cells, hairy cell lymphs, or megakaryocytes
  • New abnormal lymphocytes or monocytes
  • Variant or atypical lymphs >15%
  • Blood parasites
  • RBC morphology with 3+ spherocytes, RBC inclusions, suspect Hgb-C,
  • crystals, Pappenheimer bodies or bizarre morphology
  • nRBC’s

Description: A Prothrombin Time test will measure the speed of which your blood clots. This test can be used to detect a bleeding or clotting disorder or to determine in your blood is clotting too fast or too slow.

Also Known As: Pro Time with INR Test, Prothrombin Time and International Normalized Ratio test, Prothrombin Time PT with INR Test, Prothrombin Time with INR Test, Prothrombin with INR, Protime with INR, PT Test

Collection Method: Blood draw

Specimen Type: Whole Blood

Test Preparation: No preparation required

When is a Prothrombin Time with INR test ordered?

When a person takes the anticoagulant medicine warfarin, a PT and INR are ordered on a regular basis to confirm that the prescription is working effectively and that the PT/INR is adequately extended. A doctor will prescribe them frequently enough to ensure that the treatment is having the desired effect, namely, boosting the person's clotting time to a therapeutic level while minimizing the danger of excessive bleeding or bruising.

When a person who isn't taking anticoagulants exhibits signs or symptoms of excessive bleeding or clotting, a PT may be ordered when they are experiencing:

  • Bleeding that isn't explained or bruises that isn't easy to get rid of
  • Nosebleeds
  • Gums that are bleeding
  • A blood clot in an artery or vein
  • Disseminated intravascular coagulation
  • A persistent disorder that affects hemostasis, such as severe liver disease

PT and PTT may be prescribed prior to surgery when there is a high risk of blood loss associated with the procedure and/or when the patient has a clinical history of bleeding, such as frequent or severe nosebleeds and easy bruising, which may indicate the presence of a bleeding problem.

What does a Prothrombin Time with INR blood test check for?

The prothrombin time is a test that determines a person's capacity to make blood clots properly. The international normalized ratio, or INR, is a calculation based on the results of a PT that is used to track people who are taking the blood thinner warfarin.

After chemicals are added to a person's blood sample, a PT measures how long it takes for a clot to develop. The PT is frequently used with a partial thromboplastin time to measure the number and function of proteins known as coagulation factors, which are essential for optimal blood clot formation.

When an injury develops in the body and bleeding ensues, the clotting process known as hemostasis begins. This process is aided by a series of chemical events known as the coagulation cascade, in which coagulation or "clotting" components are activated one by one, leading to the development of a clot. In order for normal clotting to occur, each coagulation factor must be present in appropriate quantities and operate effectively. Excessive bleeding can result from too little, while excessive clotting can result from too much.

There are two "pathways" that can trigger clotting in a test tube during a laboratory test, the extrinsic and intrinsic pathways. Both of these pathways subsequently converge to finish the clotting process. The PT test assesses how well all coagulation factors in the extrinsic and common routes of the coagulation cascade cooperate. Factors I, II, V, VII, and X are included. The PTT test examines the protein factors XII, XI, IX, VIII, X, V, II, and I, as well as prekallikrein and high molecular weight kininogen, which are all part of the intrinsic and common pathways. The PT and PTT examine the overall ability to generate a clot in a fair period of time, and the test results will be delayed if any of these elements are insufficient in quantity or are not operating effectively.

The PT test is normally done in seconds and the results are compared to a normal range that represents PT levels in healthy people. Because the reagents used to conduct the PT test vary from one laboratory to the next and even within the same laboratory over time, the normal ranges will change. The Internationalized Normalized Ratio, which is computed based on the PT test result, was developed and recommended for use by a World Health Organization committee to standardize results across various laboratories in the United States and around the globe for people taking the anticoagulant warfarin.

The INR is a formula that accounts for variations in PT reagents and enables for comparison of findings from different laboratories. When a PT test is performed, most laboratories report both PT and INR readings. However, the INR should only be used by people who are taking the blood thinner warfarin.

Lab tests often ordered with a Prothrombin Time with INR test:

  • Partial Thromboplastin Time
  • Fibrinogen Activity
  • Platelet Count
  • Complete Blood Count (CBC)
  • Coagulation Factors
  • Warfarin Sensitivity testing

Conditions where a Prothrombin Time with INR test is recommended:

  • Bleeding Disorders
  • Excessive Clotting Disorders
  • Vitamin K Deficiency
  • Liver Disease
  • DIC

How does my health care provider use a Prothrombin Time with INR test?

The prothrombin time is used to diagnose the origin of unexplained bleeding or abnormal blood clots, generally in conjunction with a partial thromboplastin time. The international normalized ratio is a calculation based on the results of a PT that is used to monitor people on the blood thinner warfarin.

Coagulation factors are proteins that are involved in the body's process of forming blood clots to assist stop bleeding. When an injury occurs and bleeding begins, coagulation factors are triggered in a series of events that finally assist in the formation of a clot. In order for normal clotting to occur, each coagulation factor must be present in appropriate quantities and operate effectively. Excessive bleeding can result from too little, while excessive clotting can result from too much.

The PT and INR are used to monitor the anticoagulant warfarin's efficacy. This medication influences the coagulation cascade's function and aids in the prevention of blood clots. It is given to those who have a history of recurrent abnormal blood clotting on a long-term basis. Warfarin therapy's purpose is to strike a balance between preventing blood clots and causing excessive bleeding. This equilibrium must be carefully monitored. The INR can be used to change a person's medication dosage in order to get their PT into the ideal range for them and their condition.

What do my PT and INR test results mean?

Most laboratories report PT findings that have been corrected to the INR for persons taking warfarin. For basic "blood-thinning" needs, these persons should have an INR of 2.0 to 3.0. Some people with a high risk of blood clot require a higher INR, about 2.5 to 3.5.

The outcome of a PT test is determined by the method utilized, with results measured in seconds and compared to a normal range defined and maintained by the laboratory that administers the test. This normal range is based on the average value of healthy persons in the area, and it will differ somewhat from test to lab. Someone who isn't on warfarin would compare their PT test result to the usual range provided by the laboratory that conducted the test.

A prolonged PT indicates that the blood is taking an excessive amount of time to clot. This can be caused by liver illness, vitamin K inadequacy, or a coagulation factor shortage, among other things. The PT result is frequently combined with the PTT result to determine what condition is present.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: A PT with INR and PTT test is used to diagnose and monitor bleeding disorders or excessive clotting disorders. The biomarkers in the test are used to measure the time it takes for the blood to form a clot.

Also Known As: Pro Time with INR Test, Prothrombin Time and International Normalized Ratio test, Prothrombin Time PT with INR Test, Prothrombin Time with INR Test, Prothrombin with INR, Protime with INR, PT Test, Activated Partial Thromboplastin Time Test, aPTT test, PTT Test

Collection Method: Blood Draw

Specimen Type: Whole Blood

Test Preparation: No preparation required

When is a Prothrombin with INR and Partial Thromboplastin Time test ordered?

When a person takes the anticoagulant medicine warfarin, a PT and INR are ordered on a regular basis to confirm that the prescription is working effectively and that the PT/INR is adequately extended. A doctor will prescribe them frequently enough to ensure that the treatment is having the desired effect, namely, boosting the person's clotting time to a therapeutic level while minimizing the danger of excessive bleeding or bruising.

When a person who isn't taking anticoagulants exhibits signs or symptoms of excessive bleeding or clotting, a PT may be ordered when they are experiencing:

  • Bleeding that isn't explained or bruises that isn't easy to get rid of
  • Nosebleeds
  • Gums that are bleeding
  • A blood clot in a vein or artery
  • Disseminated intravascular coagulation
  • A persistent disorder that affects hemostasis, such as severe liver disease

When a person has the following symptoms, the PTT may be ordered along with other tests, such as a PT:

  • Bleeding that isn't explained or bruises that isn't easy to get rid of
  • A blood clot in a vein or artery is a serious condition.
  • Disseminated intravascular coagulation
  • A chronic disorder that affects hemostasis, such as liver disease

A PTT can be requested in the following situations:

  • When a person develops a blood clot or a woman has repeated miscarriages, as part of a lupus anticoagulant, anticardiolipin antibodies, or antiphospholipid syndrome examination
  • When a person is on standard heparin therapy, the two are overlapped and both the PTT and PT are monitored until the person has stabilized. When a person is switched from heparin therapy to extended warfarin therapy, the two are combined and both the PTT and PT are monitored until the person has stabilized
  • Prior to surgery, if there is a high risk of blood loss and/or if the patient has a history of bleeding, such as frequent or severe nasal bleeds and easy bruising, which could suggest the presence of a bleeding problem

What does a Prothrombin with INR and Partial Thromboplastin Time blood test check for?

The prothrombin time with INR and partial thromboplastin time is a test that determines a person's capacity to make blood clots properly. The international normalized ratio, or INR, is a calculation based on the results of a PT that is used to track people who are taking the blood thinner warfarin. The PTT evaluates the number and function of specific proteins known as coagulation factors, which are crucial in blood clot formation.

After chemicals are added to a person's blood sample, a PT measures how long it takes for a clot to develop. The PT is frequently used with a partial thromboplastin time to measure the number and function of proteins known as coagulation factors, which are essential for optimal blood clot formation.

When an injury develops in the body and bleeding ensues, the clotting process known as hemostasis begins. This process is aided by a series of chemical events known as the coagulation cascade, in which coagulation or "clotting" components are activated one by one, leading to the development of a clot. In order for normal clotting to occur, each coagulation factor must be present in appropriate quantities and operate effectively. Excessive bleeding can result from too little, while excessive clotting can result from too much.

There are two "pathways" that can trigger clotting in a test tube during a laboratory test, the extrinsic and intrinsic pathways. Both of these pathways subsequently converge to finish the clotting process. The PT test assesses how well all coagulation factors in the extrinsic and common routes of the coagulation cascade cooperate. Factors I, II, V, VII, and X are included. The PTT test examines the protein factors XII, XI, IX, VIII, X, V, II, and I, as well as prekallikrein and high molecular weight kininogen, which are all part of the intrinsic and common pathways. The PT and PTT examine the overall ability to generate a clot in a fair period of time, and the test results will be delayed if any of these elements are insufficient in quantity or are not operating effectively.

The PT test is normally done in seconds and the results are compared to a normal range that represents PT levels in healthy people. The normal ranges will fluctuate because the reagents used to perform the PT test differ from one laboratory to the next and even within the same laboratory over time. For people taking the anticoagulant warfarin, a World Health Organization committee developed and recommended the use of the Internationalized Normalized Ratio, which is calculated based on the PT test result, to standardize results across different laboratories in the United States and around the world.

The INR is a formula that accounts for variations in PT reagents and enables for comparison of findings from different laboratories. When a PT test is performed, most laboratories report both PT and INR readings. However, the INR should only be used by people who are taking the blood thinner warfarin.

Lab tests often ordered with a Prothrombin with INR and Partial Thromboplastin Time test:

  • Fibrinogen Activity
  • Platelet Count
  • Complete Blood Count (CBC)
  • D-Dimer
  • Lupus Anticoagulant
  • ACT
  • Von Willebrand Factor
  • Antiphospholipid Antibodies
  • Warfarin Sensitivity Testing

Conditions where a Prothrombin with INR and Partial Thromboplastin Time test is recommended:

  • Bleeding Disorders
  • Excessive Clotting Disorders
  • Vitamin K Deficiency
  • Liver Disease
  • DIC
  • Antiphospholipid Syndrome

How does my health care provider use a Prothrombin with INR and Partial Thromboplastin Time test?

The prothrombin time is used to diagnose the origin of unexplained bleeding or abnormal blood clots, generally in conjunction with a partial thromboplastin time. The international normalized ratio is a calculation based on the results of a PT that is used to monitor people on the blood thinner warfarin.

Coagulation factors are proteins that are involved in the body's process of forming blood clots to assist stop bleeding. When an injury occurs and bleeding begins, coagulation factors are triggered in a series of events that finally assist in the formation of a clot. In order for normal clotting to occur, each coagulation factor must be present in appropriate quantities and operate effectively. Excessive bleeding can result from too little, while excessive clotting can result from too much.

The PT and INR are used to monitor the anticoagulant warfarin's efficacy. This medication influences the coagulation cascade's function and aids in the prevention of blood clots. It is given to those who have a history of recurrent abnormal blood clotting on a long-term basis. Warfarin therapy's purpose is to strike a balance between preventing blood clots and causing excessive bleeding. This equilibrium must be carefully monitored. The INR can be used to change a person's medication dosage in order to get their PT into the ideal range for them and their condition.

The PTT is mostly used to look into unexplained bleeding or clotting. It may be ordered in conjunction with a prothrombin time test to assess hemostasis, the body's process of forming blood clots to stop bleeding. Excessive bleeding or clotting issues are frequently investigated with these tests as a starting point.

Coagulation factors are proteins that have a role in hemostasis and the development of blood clots. When an injury occurs and bleeding begins, coagulation factors are triggered in a series of events that finally assist in the formation of a clot.

Prekallikrein and high molecular weight kininogen, as well as coagulation factors XII, XI, IX, VIII, X, V, II, and I, are all assessed using the PTT. The coagulation factors VII, X, V, II, and I are evaluated in a PT test. A health practitioner can determine what type of bleeding or clotting condition is present by combining the findings of the two tests. The PTT and PT aren't diagnostic, but they can help you figure out if you need more tests.

The following are some examples of PTT applications:

  • To detect coagulation factor deficit; if the PTT is extended, additional tests can be performed to ascertain whether coagulation factors are deficient or malfunctioning, or to see if the blood contains an antibody to a coagulation factor.
  • Nonspecific autoantibodies, such as lupus anticoagulant, can be detected and are linked to clotting episodes and recurrent miscarriages. As a result, PTT testing may be included in a clotting disorder panel to aid in the investigation of recurrent miscarriages or the diagnosis of antiphospholipid syndrome. The LA-sensitive PTT, a version of the PTT, could be used for this.
  • Heparin is an anticoagulant medicine that is given intravenously or by injection to prevent and treat blood clots; it is used to monitor routine heparin anticoagulant therapy. PTT is extended as a result of it. Heparin must be constantly managed when it is used for medicinal purposes. If too much is given, the patient may bleed excessively; if not enough is given, the patient may continue to clot.

The PTT and PT tests are sometimes used to screen for potential bleeding tendencies before surgical or other invasive treatments based on carefully acquired patient histories.

Other tests that may be done in conjunction with a PTT or in response to aberrant results include:

  • Platelet count — should be checked often during heparin therapy to detect any thrombocytopenia caused by the drug.
  • Thrombin time testing – used to rule out the possibility of heparin contamination.
  • Fibrinogen testing - to rule out a low level of fibrinogen as the cause of a delayed PTT.
  • A second PTT test is conducted after a first PTT is delayed by mixing the person's plasma with pooled normal plasma.  If the PTT time returns to normal, it indicates that one or more coagulation factors in the person's plasma are deficient. If the condition persists, it could be caused by the presence of an aberrant specific factor inhibitor or nonspecific lupus anticoagulant.
  • Coagulation factor tests are used to determine how active coagulation factors are. They can identify low protein levels or proteins that aren't working properly. A coagulation factor's antigen level is occasionally tested.
  • If the presence of lupus anticoagulant is suspected, a test for dilute Russell viper venom may be performed.
  • Von Willebrand factor is a test that is sometimes conducted to see if von Willebrand disease is causing a prolonged PTT.

What do my PT with INR and PTT test results mean?

Most laboratories report PT findings that have been corrected to the INR for persons taking warfarin. For basic "blood-thinning" needs, these persons should have an INR of 2.0 to 3.0. Some people with a high risk of blood clot require a higher INR, about 2.5 to 3.5.

The outcome of a PT test is determined by the method utilized, with results measured in seconds and compared to a normal range defined and maintained by the laboratory that administers the test. This normal range is based on the average value of healthy persons in the area, and it will differ somewhat from test to lab. Someone who isn't on warfarin would compare their PT test result to the usual range provided by the laboratory that conducted the test.

A prolonged PT indicates that the blood is taking an excessive amount of time to clot. This can be caused by liver illness, vitamin K inadequacy, or a coagulation factor shortage, among other things. The PT result is frequently combined with the PTT result to determine what condition is present.

PTT findings are usually available in seconds. A normal clotting function is usually indicated by a PTT result that falls within a laboratory's reference interval. However, a single coagulation factor deficiency may be present in low to moderate amounts. The PTT should not be extended until the factor levels have dropped to 30% to 40% of normal. Lupus anticoagulant may also be present, but it is unlikely to affect the PTT result. A more sensitive LA-sensitive PTT or a dilute Russell viper venom time can be used to test for the lupus anticoagulant if it is suspected.

A delayed PTT indicates that clotting is taking longer than usual and could be caused by a number of factors. This frequently indicates that the body's clotting ability is being harmed by a coagulation factor deficit or a particular or nonspecific antibody. Defects in coagulation factors can be acquired or inherited.

It's possible that prolonged PTT tests are caused by:

  • Von Willebrand disease is the most prevalent inherited bleeding disorder, and it inhibits platelet function because von Willebrand factor levels are low.
  • Hemophilia A and B are two more inherited bleeding disorders that are caused by a lack of factors VIII and IX, respectively.
  • Other coagulation factors, such as factors XII and XI, are deficient.

Deficiencies in acquired factors:

  • A vitamin K insufficiency. Vitamin K is required for the production of clotting factors. Vitamin K deficiency is uncommon, but it can occur as a result of a poor diet, malabsorption issues, or the use of certain antibiotics over an extended period of time, for example.
  • Because the liver produces the majority of coagulation components, liver illness might result in extended PT and PTT. PT is more likely to be prolonged than PTT in patients with liver disease and vitamin K insufficiency.
  • A nonspecific inhibitor, such as lupus anticoagulant—the presence of these inhibitors is usually linked to abnormal clotting, but they can also lengthen the PTT. For further information, see the individual test articles.
  • Antibodies that selectively target certain coagulation factors, such as antibodies that target factor VIII, are known as specific inhibitors. They can form in people who are receiving factor replacements or they can develop spontaneously as an autoantibody in people who have a bleeding condition. Factor-specific inhibitors have the potential to induce serious bleeding.
  • Heparin is an anticoagulant that will prolong a PTT if it is present in the sample as a contaminant or as part of anticoagulation therapy. The goal PTT for anticoagulant therapy is usually 1.5 to 2.5 times longer than the pretreatment level.
  • The PTT is not used to monitor warfarin anticoagulation therapy, but it may be influenced by it. The PT is commonly used to track warfarin therapy.
  • Anticoagulation therapy with a direct thrombin inhibitor or a direct factor Xa inhibitor are examples of other anticoagulants.
  • Leukemia, severe bleeding in pregnant women prior to or after delivery, and recurrent miscarriages can all cause elevated PTT levels

The PTT results are frequently combined with the PT results to determine what ailment is present.

PTT testing may be shortened as a result of:

  • Disseminated intravascular coagulation—circulating procoagulants shorten the PTT in the early phases of DIC.
  • Extensive cancer
  • An acute-phase reaction is a disease that causes significant tissue inflammation or trauma, which causes factor VIII levels to rise. It's frequently a one-time occurrence that isn't tracked with a PTT test. The PTT will return to normal once the condition that caused the acute phase reaction is resolved.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: A PTT test is used to diagnose and monitor bleeding disorders or excessive clotting disorders. The biomarker in the test is used to measure the tsime it takes for the blood to form a clot.

Also Known As: Activated Partial Thromboplastin Time Test, aPTT test, PTT Test

Collection Method: Blood Draw

Specimen Type: Whole Blood

Test Preparation: No preparation required

When is Partial Thromboplastin Time test ordered?

When a person has the following symptoms, the PTT may be ordered along with other tests, such as a PT:

  • Bleeding that isn't explained or bruises that isn't easy to get rid of
  • A blood clot in a vein or artery is a serious condition.
  • Disseminated intravascular coagulation
  • A chronic disorder that affects hemostasis, such as liver disease

A PTT can be requested in the following situations:

  • When a person develops a blood clot or a woman has repeated miscarriages, as part of a lupus anticoagulant, anticardiolipin antibodies, or antiphospholipid syndrome examination
  • When a person is on standard heparin therapy, the two are overlapped and both the PTT and PT are monitored until the person has stabilized. When a person is switched from heparin therapy to extended warfarin therapy, the two are combined and both the PTT and PT are monitored until the person has stabilized
  • Prior to surgery, if there is a high risk of blood loss and/or if the patient has a history of bleeding, such as frequent or severe nasal bleeds and easy bruising, which could suggest the presence of a bleeding problem

What does a Partial Thromboplastin Time blood test check for?

The partial thromboplastin time is a screening test that determines a person's capacity to form blood clots properly. It counts how long it takes for a clot to develop in a person's blood sample after chemicals have been administered. The PTT evaluates the number and function of specific proteins known as coagulation factors, which are crucial in blood clot formation.

When bodily tissues or blood vessel walls are harmed, bleeding ensues, and hemostasis is initiated. Platelets are little cell fragments that cling to the damage site and subsequently clump together. A process known as the coagulation cascade begins at the same time, and coagulation factors are activated. Fibrin threads develop and crosslink into a net that attaches to the damage site and stabilizes it as a result of the cascade reactions. This, combined with the platelets sticking, forms a stable blood clot that seals off injuries to blood arteries, prevents further blood loss, and allows damaged areas to heal.

For appropriate blood clot formation, each component of this hemostatic mechanism must operate effectively and be present in sufficient quantities. If one or more of these factors are deficient, or if they function improperly, a stable clot may not form, and bleeding may continue.

A PTT compares a person's sample to a normal clotting time reference period. A person's PTT is considered "prolonged" if it takes longer than usual to clot. A prolonged PTT could be caused by a disease that causes one or more coagulation factors to diminish or become dysfunctional. It's also possible that it's caused by a disorder in which the body creates antibodies that attack one or more coagulation factors, impairing their activity.

A PTT may take longer than expected if the person being tested creates an autoantibody termed an antiphospholipid antibody, which interferes with the test. Because it targets phospholipids, which are employed in the PTT, this type of antibody has an effect on the test findings. Antiphospholipid antibodies can extend the PTT test result, although they are linked to increased clotting in the body. A person who makes these antibodies may be more susceptible to blood clots. A PTT could be used to assess someone who has signs and symptoms of excessive clotting or antiphospholipid syndrome.

A PTT is frequently ordered in conjunction with a prothrombin time while investigating bleeding or clotting episodes. The results of these tests will be analyzed by a health professional in order to discover the reason of bleeding or clotting episodes.

Coagulation tests like the PT and PTT are now known to be reliant on what happens artificially in the test setting and so do not always reflect what happens in the body. They can, however, be utilized to assess certain aspects of the hemostasis system. The PTT and PT tests measure coagulation components that are part of the intrinsic, extrinsic, and common chemical reaction pathways in the cascade, respectively.

Lab tests often ordered with a Partial Thromboplastin Time test:

  • PT and INR
  • Fibrinogen
  • D-Dimer
  • Lupus Anticoagulant
  • ACT
  • Coagulation Factors
  • Platelet Count
  • Complete Blood Count (CBC)
  • Von Willebrand Factor
  • Antiphospholipid Antibodies

Conditions where a Partial Thromboplastin Time test is recommended:

  • Bleeding Disorders
  • Excessive Clotting Disorders
  • Vitamin K Deficiency
  • DIC
  • Antiphospholipid Syndrome

How does my health care provider use a Partial Thromboplastin Time test?

The PTT is mostly used to look into unexplained bleeding or clotting. It may be ordered in conjunction with a prothrombin time test to assess hemostasis, the body's process of forming blood clots to stop bleeding. Excessive bleeding or clotting issues are frequently investigated with these tests as a starting point.

Coagulation factors are proteins that have a role in hemostasis and the development of blood clots. When an injury occurs and bleeding begins, coagulation factors are triggered in a series of events that finally assist in the formation of a clot.

Prekallikrein and high molecular weight kininogen, as well as coagulation factors XII, XI, IX, VIII, X, V, II, and I, are all assessed using the PTT. The coagulation factors VII, X, V, II, and I are evaluated in a PT test. A health practitioner can determine what type of bleeding or clotting condition is present by combining the findings of the two tests. The PTT and PT aren't diagnostic, but they can help you figure out if you need more tests.

The following are some examples of PTT applications:

  • To detect coagulation factor deficit; if the PTT is extended, additional tests can be performed to ascertain whether coagulation factors are deficient or malfunctioning, or to see if the blood contains an antibody to a coagulation factor.
  • Nonspecific autoantibodies, such as lupus anticoagulant, can be detected and are linked to clotting episodes and recurrent miscarriages. As a result, PTT testing may be included in a clotting disorder panel to aid in the investigation of recurrent miscarriages or the diagnosis of antiphospholipid syndrome. The LA-sensitive PTT, a version of the PTT, could be used for this.
  • Heparin is an anticoagulant medicine that is given intravenously or by injection to prevent and treat blood clots; it is used to monitor routine heparin anticoagulant therapy. PTT is extended as a result of it. Heparin must be constantly managed when it is used for medicinal purposes. If too much is given, the patient may bleed excessively; if not enough is given, the patient may continue to clot.

The PTT and PT tests are sometimes used to screen for potential bleeding tendencies before surgical or other invasive treatments based on carefully acquired patient histories.

Other tests that may be done in conjunction with a PTT or in response to aberrant results include:

  • Platelet count — should be checked often during heparin therapy to detect any thrombocytopenia caused by the drug.
  • Thrombin time testing – used to rule out the possibility of heparin contamination.
  • Fibrinogen testing - to rule out a low level of fibrinogen as the cause of a delayed PTT.
  • A second PTT test is conducted after a first PTT is delayed by mixing the person's plasma with pooled normal plasma.  If the PTT time returns to normal, it indicates that one or more coagulation factors in the person's plasma are deficient. If the condition persists, it could be caused by the presence of an aberrant specific factor inhibitor or nonspecific lupus anticoagulant.
  • Coagulation factor tests are used to determine how active coagulation factors are. They can identify low protein levels or proteins that aren't working properly. A coagulation factor's antigen level is occasionally tested.
  • If the presence of lupus anticoagulant is suspected, a test for dilute Russell viper venom may be performed.
  • Von Willebrand factor is a test that is sometimes conducted to see if von Willebrand disease is causing a prolonged PTT.

What do my Partial Thromboplastin Time test results mean?

PTT findings are usually available in seconds. A normal clotting function is usually indicated by a PTT result that falls within a laboratory's reference interval. However, a single coagulation factor deficiency may be present in low to moderate amounts. The PTT should not be extended until the factor levels have dropped to 30% to 40% of normal. Lupus anticoagulant may also be present, but it is unlikely to affect the PTT result. A more sensitive LA-sensitive PTT or a dilute Russell viper venom time can be used to test for the lupus anticoagulant if it is suspected.

A delayed PTT indicates that clotting is taking longer than usual and could be caused by a number of factors. This frequently indicates that the body's clotting ability is being harmed by a coagulation factor deficit or a particular or nonspecific antibody. Defects in coagulation factors can be acquired or inherited.

It's possible that prolonged PTT tests are caused by:

  • Von Willebrand disease is the most prevalent inherited bleeding disorder, and it inhibits platelet function because von Willebrand factor levels are low.
  • Hemophilia A and B are two more inherited bleeding disorders that are caused by a lack of factors VIII and IX, respectively.
  • Other coagulation factors, such as factors XII and XI, are deficient.

Deficiencies in acquired factors:

  • A vitamin K insufficiency. Vitamin K is required for the production of clotting factors. Vitamin K deficiency is uncommon, but it can occur as a result of a poor diet, malabsorption issues, or the use of certain antibiotics over an extended period of time, for example.
  • Because the liver produces the majority of coagulation components, liver illness might result in extended PT and PTT. PT is more likely to be prolonged than PTT in patients with liver disease and vitamin K insufficiency.
  • A nonspecific inhibitor, such as lupus anticoagulant—the presence of these inhibitors is usually linked to abnormal clotting, but they can also lengthen the PTT. For further information, see the individual test articles.
  • Antibodies that selectively target certain coagulation factors, such as antibodies that target factor VIII, are known as specific inhibitors. They can form in people who are receiving factor replacements or they can develop spontaneously as an autoantibody in people who have a bleeding condition. Factor-specific inhibitors have the potential to induce serious bleeding.
  • Heparin is an anticoagulant that will prolong a PTT if it is present in the sample as a contaminant or as part of anticoagulation therapy. The goal PTT for anticoagulant therapy is usually 1.5 to 2.5 times longer than the pretreatment level.
  • The PTT is not used to monitor warfarin anticoagulation therapy, but it may be influenced by it. The PT is commonly used to track warfarin therapy.
  • Anticoagulation therapy with a direct thrombin inhibitor or a direct factor Xa inhibitor are examples of other anticoagulants.
  • Leukemia, severe bleeding in pregnant women prior to or after delivery, and recurrent miscarriages can all cause elevated PTT levels

The PTT results are frequently combined with the PT results to determine what ailment is present.

PTT testing may be shortened as a result of:

  • Disseminated intravascular coagulation—circulating procoagulants shorten the PTT in the early phases of DIC.
  • Extensive cancer
  • An acute-phase reaction is a disease that causes significant tissue inflammation or trauma, which causes factor VIII levels to rise. It's frequently a one-time occurrence that isn't tracked with a PTT test. The PTT will return to normal once the condition that caused the acute phase reaction is resolved.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: Iron and Total Iron Binding Capacity is a blood panel used to determine iron levels in your blood, your body’s ability to transport iron, and help diagnose iron-deficiency and iron overload.

Also Known As: Serum Iron Test, Serum Fe Test, Iron Binding Capacity Test, IBC Test, Serum Iron-Binding Capacity Siderophilin Test, TIBC Test, UIBC Test, Iron Lab Test, TIBC Blood test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is a Iron and Total Iron Binding Capacity test ordered?

When a doctor feels that a person's symptoms are caused by iron overload or poisoning, an iron and TIBC test, as well ferritin assays, may be done. These may include the following:

  • Joint discomfort
  • Weakness and exhaustion
  • Energy deficiency
  • Pain in the abdomen
  • Suffering from a lack of sexual desire
  • Problems with the heart

When a child is suspected of ingesting too many iron tablets, a serum iron test is required to detect the poisoning and to determine its severity.

A doctor may also request iron and TIBC when the results of a standard CBC test are abnormal, such as a low hematocrit or hemoglobin, or when a doctor suspects iron deficiency based on signs and symptoms such as:

  • Chronic tiredness/fatigue
  • Dizziness
  • Weakness
  • Headaches
  • Skin that is pale

What does a Iron and Total Iron Binding Capacity blood test check for?

Iron is a necessary ingredient for survival. It is a vital component of hemoglobin, the protein in red blood cells that binds and releases oxygen in the lungs and throughout the body. It is required in small amounts to help form normal red blood cells and is a critical part of hemoglobin, the protein in RBCs that binds oxygen in the lungs and releases it as blood circulates to other parts of the body.

By detecting numerous components in the blood, iron tests are ordered to determine the quantity of iron in the body. These tests are frequently ordered at the same time, and the data are analyzed together to determine the diagnosis and/or monitor iron deficiency or overload.

The level of iron in the liquid component of the blood is measured by serum iron.

Total iron-binding capacity is a measurement of all the proteins in the blood that may bind to iron, including transferrin.

The percentage of transferrin that has not yet been saturated is measured by the UIBC. Transferrin levels are also reflected in the UIBC.

Low iron levels can cause anemia, resulting in a decrease in the production of microcytic and hypochromic RBCs. Large amounts of iron, on the other hand, might be hazardous to the body. When too much iron is absorbed over time, iron compounds build up in tissues, particularly the liver, heart, and pancreas.

Normally, iron is absorbed from food and distributed throughout the body by binding to transferrin, a liver protein. About 70% of the iron delivered is used in the synthesis of hemoglobin in red blood cells. The rest is stored as ferritin or hemosiderin in the tissues, with minor amounts being utilized to make other proteins like myoglobin and enzymes.

Insufficient intake, limited absorption, or increased dietary requirements, as observed during pregnancy or with acute or chronic blood loss, are all signs of iron deficiency. Excessive intake of iron pills can cause acute iron overload, especially in children. Excessive iron intake, genetic hemochromatosis, multiple blood transfusions, and a few other disorders can cause chronic iron overload.

Lab tests often ordered with a Iron and Total Iron Binding Capacity test:

  • Complete Blood Count
  • Ferritin
  • Transferrin
  • Zinc Protoporphyrin

Conditions where a Iron and Total Iron Binding Capacity test is recommended:

  • Anemia
  • Hemochromatosis

How does my health care provider use a Iron and Total Iron Binding Capacity test?

The amount of circulating iron in the blood, the capacity of the blood to carry iron, and the amount of stored iron in tissues can all be determined by ordering one or more tests. Testing can also assist distinguish between different types of anemia

The level of iron in the blood is measured by serum iron.

Total iron-binding capacity is a measurement of all the proteins in the blood that may bind to iron, including transferrin. The TIBC test is a useful indirect assessment of transferrin because it is the predominant iron-binding protein. In response to the requirement for iron, the body generates transferrin. Transferrin levels rise when iron levels are low, and vice versa. About one-third of the binding sites on transferrin are used to transport iron in healthy humans.

The reserve capacity of transferrin, or the part of transferrin that has not yet been saturated, is measured by UIBC. Transferrin levels are also reflected in the UIBC.

The iron test result, as well as TIBC or UIBC, are used to calculate transferrin saturation. It represents the proportion of transferrin that is iron-saturated.

Ferritin is the major storage protein for iron inside cells, and serum ferritin represents the quantity of stored iron in the body.

These tests are frequently ordered together, and the results can assist the doctor figure out what's causing the iron deficit or overload.

Additional information about iron

A balance between the quantity of iron received into the body and the amount of iron lost is required to maintain normal iron levels. Because a tiny quantity of iron is lost each day, a deficiency will develop if too little iron is consumed. In healthy persons, there is usually enough iron to prevent iron deficiency and/or iron deficiency anemia, unless they eat a bad diet. There is a greater need for iron in some circumstances. People who have persistent gut bleeding or women who have heavy menstrual periods lose more iron than they should and can develop iron deficiency. Females who are pregnant or breastfeeding lose iron to their babies and may develop an iron shortage if they do not consume enough supplemental iron. Children may require additional iron, especially during periods of rapid growth, and may suffer iron shortage.

Low serum iron can also arise when the body is unable to adequately utilize iron. The body cannot correctly utilize iron to generate additional red cells in many chronic disorders, particularly malignancies, autoimmune diseases, and chronic infections. As a result, transferrin production slows, serum iron levels drop because little iron is absorbed from the stomach, and ferritin levels rise. Malabsorption illnesses like sprue syndrome can cause iron deficiency.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: The Alpha-1-Antitrypsin Quantitative test measures levels of the alpha-1-antitrypsin protein in the blood.

Also Known As: Alpha1-antitrypsin Test, A1AT Test, AAT Test, Alpha 1 Antitrypsin Serum Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is an Alpha-1-Antitrypsin test ordered?

When Alpha-1 antitrypsin tests may be prescribed:

  • Jaundice that lasts more than a week or two in a baby, an enlarged spleen, fluid buildup in the belly, persistent itching, and other symptoms of liver damage are present.
  • A person with COPD, elevated, sensitive skin lesions that develop into ulcers, granulomatosis with polyangiitis, or unexplained airway widening may be of any age.
  • Wheezing, a persistent cough, bronchitis, shortness of breath after exercise, and/or other emphysema symptoms often appear in people under the age of 40. This is particularly true when the person is not a smoker, has not been exposed to known lung irritants, and when the lung damage appears to be low in the lungs.
  • Someone has an alpha-1 antitrypsin deficiency that runs in their family.
  • A person wants to know how likely it is that their child would experience the same problems as their impacted family member.

The American Thoracic Society advised AAT testing in their 2003 guidelines when people were diagnosed with diseases like:

  • Young age for onset of emphysema and/or absence of clear risk factors for the condition, such as smoking
  • Bronchiectasis
  • difficult-to-treat asthma Unknown origin of liver disease
  • Panniculitis with necrosis

The Alpha-1 Foundation suggests AAT testing for all people with:

  • COPD
  • illness of the liver with no known cause
  • Panniculitis with necrosis
  • Polyangiitis and granulomatosis
  • mysterious bronchiectasis

The Alpha-1 Foundation also advises providing genetic counseling and AAT testing to people who have immediate or extended family members who have an aberrant AAT gene.

What does an Alpha-1-Antitrypsin blood test check for?

A blood protein called alpha-1 antitrypsin shields the lungs from harm from enzymes that have been activated. To help with the diagnosis of alpha-1 antitrypsin deficiency, laboratory tests detect the amount of AAT in blood or find aberrant forms of AAT that a person has inherited.

The most significant enzyme that AAT aids in inactivating is elastase. Elastase is a white blood cell termed a neutrophil that is created as part of the body's normal response to inflammation and injury. Elastase disassembles proteins so that the body can eliminate and recycle them. Elastase will also start to degrade and harm lung tissue if its activity is not controlled by AAT.

The gene that codes for AAT is inherited twice every person. The protease inhibitor gene is what it is known as. Because of the co-dominance of this gene, the body produces half of its AAT from each copy of the SERPINA1 gene. Less AAT and/or AAT with diminished function are produced if there is a change or mutation in one or both of the gene copies.

Alpha-1 antitrypsin deficiency is a condition that affects a person whose AAT production falls below 30% of normal. Emphysema, a progressive lung illness, is a serious danger for people with this disorder to experience in their early adult years. The lung damage likely to happen sooner and be more severe if they smoke or are exposed to occupational dust or fumes.

AAT that is dysfunctional of a particular sort builds up in the cells of the liver, where it is created. As AAT accumulates in these cells, it starts to produce aberrant protein chains, which then start to kill the cells and harm the liver. AAT-deficient neonates are jaundiced and suffer liver damage in about 10% of cases. These infants may need a liver transplant to survive in serious circumstances. The most frequent genetic cause of liver disease in children is presently AAT deficiency.

Adults with an AAT deficiency are more likely to develop liver cancer, cirrhosis, and chronic liver disease. Adults with AAT insufficiency rarely experience symptoms or indicators of liver damage, nevertheless. The hereditary gene mutation determines the amount and function of the AAT. The SERPINA1 gene contains more than 120 distinct alleles, however only a few of them are widespread. 90% of Americans have two copies of the typical, "wild type," M gene. S and Z are the aberrant genes that are most frequently found.

Lab tests often ordered with an Alpha-1-Antitrypsin test:

  • Protein Electrophoresis
  • Total Protein
  • Hepatic Function Panel
  • Blood Gases

Conditions where an Alpha-1-Antitrypsin test is recommended:

  • Lung Disease
  • Liver Disease
  • Asthma

How does my health care provider use an Alpha-1-Antitrypsin test?

When a patient has early onset emphysema or chronic obstructive pulmonary disease but no clear risk factors, such as smoking or exposure to lung irritants like dust or fumes, alpha-1 antitrypsin testing is utilized to help diagnose alpha-1 antitrypsin deficiency as the cause. It may also be applied to asthmatics who continue to have breathing difficulties despite receiving treatment.

Other symptoms of unexplained liver injury, such as prolonged jaundice, are also diagnosed with the use of testing. This can be done on anyone of any age, but is typically done on infants and young children.

A person with a family history of alpha-1 antitrypsin deficiency may also undergo testing to identify whether they have one or two copies of the SERPINA1 gene.

There are typically three different AAT exam kinds. One or more of these could be applied to assess a person:

  • The protein alpha-1 antitrypsin in blood is measured by alpha-1 antitrypsin.
  • Testing for the phenotype of alpha-1 antitrypsin assesses the quantity and kind of AAT being produced and contrasts it with typical patterns.
  • To determine if the typical wild type M allele or variant alleles are present in the SERPINA1 gene, alpha-1 antitrypsin genotyping testing can be utilized. This test won't find every variant, but it will find the most prevalent ones as well as those that might be frequent in a specific region or family. Other family members may be examined to determine their own risk of acquiring emphysema and/or liver dysfunction as well as the possibility that their children may inherit the condition after the sick person's SERPINA1 gene alleles have been determined.

Although gene sequencing for AAT is uncommon, it might be required to find uncommon alleles and make a precise diagnosis.

What do my Alpha-1-Antitrypsin test results mean?

Alpha-1 antitrypsin deficiency may be present in a person whose blood has a low amount of AAT, according to the test results. The risk of developing emphysema and other conditions linked to AAT insufficiency increases with decreasing AAT levels.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Actin is the major antigen to which smooth muscle antibodies react in autoimmune hepatitis. F-Actin IgG antibodies are found in 52-85% of patients with autoimmune hepatitis (AIH) or chronic active hepatitis and in 22% of patients with primary biliary cirrhosis (PBC). Anti-actin antibodies have been reported in 3-18% of sera from normal healthy controls.

Most Popular

Description: Copper is a blood test that measures the amount of copper in the blood's plasma. Copper levels in the blood can help to diagnose Wilson's Disease.

Also Known As: Cu Test, Blood Copper Test, Free Copper Test, Hepatic Copper Test, Copper Serum Test, Copper Plasma Test, Copper Blood Test

Collection Method: Blood Draw

Specimen Type: Plasma or Serum

Test Preparation: No preparation required

When is a Copper test ordered?

When a health practitioner suspects Wilson disease, excess copper storage, or copper poisoning, one or more copper tests are requested along with ceruloplasmin.

When copper and ceruloplasmin results are abnormal or inconclusive, a hepatic copper test may be conducted to further evaluate copper storage.

What does a Copper blood test check for?

Copper is an important mineral that the body uses to make enzymes. These enzymes are involved in the regulation of iron metabolism, the development of connective tissue, cellular energy production, the production of melanin, and nervous system function. This test determines how much copper is present in the blood, urine, or liver.

Nuts, chocolate, mushrooms, seafood, whole grains, dried fruits, and liver are all high in copper. Copper may be absorbed into drinking water as it passes through copper pipes, and copper may be absorbed into food as it is cooked or served on copper dishes. Copper is absorbed from food or liquids in the intestines, converted to a non-toxic form by binding it to a protein, and transported to the liver in normal circumstances. To make the enzyme ceruloplasmin, the liver saves some copper and binds the remainder to another protein called apoceruloplasmin. Ceruloplasmin binds about 95 percent of the copper in the blood, with the rest attached to other proteins like albumin. In a free condition, only a little amount is present in the blood. Excess copper is excreted by the liver in the bile, which is then excreted by the body in the feces. Copper is also excreted in the urine in small amounts.

Copper excess and deficiency are uncommon. Wilson disease is a rare genetic ailment that causes the liver, brain, and other organs to store too much copper. Excess copper can arise when a person is exposed to and absorbs high amounts of copper in a short period of time or little amounts over a long period of time.

Copper deficiency can arise in patients with severe malabsorption diseases such cystic fibrosis and celiac disease, as well as infants who are exclusively fed cow-milk formulas.

Menkes kinky hair syndrome is a rare X-linked hereditary disorder that causes copper shortage in the brain and liver of affected babies. Seizures, delayed development, aberrant artery growth in the brain, and unique gray brittle kinky hair are all symptoms of the condition, which mostly affects men.

Lab tests often ordered with a Copper test:

  • Ceruloplasmin
  • Heavy Metals
  • ACTH
  • Aldosterone
  • 17-Hydroprogesterone
  • Growth Hormone

Conditions where a Copper test is recommended:

  • Wilson Disease
  • Malnutrition

How does my health care provider use a Copper test?

Copper testing is largely used to detect Wilson disease, a rare genetic ailment in which the liver, brain, and other organs accumulate an excessive amount of copper. A copper test is less usually used to detect copper excess caused by another ailment, to diagnose a copper deficit, or to track treatment for one of these conditions.

Copper is a necessary mineral, but too much of it can be harmful. The majority of it is bound to the enzyme ceruloplasmin in the blood, leaving only a little quantity "free" or unbound.

A whole blood copper test is usually ordered in conjunction with a ceruloplasmin level. If the findings of these tests are abnormal or ambiguous, a 24-hour urine copper test to monitor copper elimination and/or a copper test on a liver biopsy to check copper storage in the liver may be conducted.

A free blood copper test is sometimes ordered as well. If Wilson disease is suspected, genetic testing for mutations in the ATP7B gene may be undertaken. However, these tests are only available in a restricted number of locations and are usually carried out in specialized reference or research laboratories.

A copper test may be used to identify Menkes kinky hair syndrome, a rare inherited copper transport failure condition.

What do my Copper test results mean?

Copper test findings are frequently linked to ceruloplasmin levels and considered in context. Copper results that are abnormal are not indicative of a specific illness; rather, they signal that more research is needed. Because ceruloplasmin is an acute phase reactant, it might be raised if inflammation or severe infections are present, making interpretation difficult. Ceruloplasmin and copper levels rise during pregnancy, as well as with the use of estrogen and oral contraceptives.

Wilson disease is characterized by low blood copper concentrations, elevated urine copper levels, low ceruloplasmin levels, and increased liver copper.

Elevated copper concentrations in the blood and urine, as well as normal or increased ceruloplasmin levels, may suggest excessive copper exposure or be linked to disorders that reduce copper excretion, such as chronic liver disease, or release copper from tissues, such as acute hepatitis. Chronic diseases can cause an increase in hepatic copper levels.

Copper deficiency is indicated by lower copper concentrations in the blood and urine, as well as lower ceruloplasmin levels.

A normal hepatic copper test could mean that copper metabolism is normal, or that the distribution of copper in the liver is uneven, and that the sample isn't reflective of the person's health.

If a person is being treated for Wilson disease or copper toxicity with copper-binding medicines, their 24-hour urine copper levels may be high until their body copper stores are depleted. Copper concentrations in the blood and urine should return to normal over time.

If a person is being treated for a copper deficient disorder and their ceruloplasmin and total copper levels start to rise, the condition is likely responding to the treatment.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Clinical Significance
Micronutrient, Copper, Plasma - Copper is an essential element that is a cofactor of many enzymes. Copper metabolism is disturbed in Wilson's disease, Menkes disease, primary biliary cirrhosis, and Indian childhood cirrhosis. Copper concentrations increase in acute phase reactions and during the third trimester of pregnancy. Copper concentrations are decreased with nephrosis, malabsorption, and malnutrition. Copper concentrations are also useful to monitor patients, especially preterm newborns, on nutritional supplementation. Results of copper are often interpreted together with ceruloplasmin.

Patients must be 18 years of age or greater.

Reference Range(s)
≥18 years    70-175 mcg/dLReference range not available for individuals <18 years for this micronutrient test.


Copper is an essential element that is a cofactor of many enzymes. Copper metabolism is disturbed in Wilson's disease, Menkes disease, primary biliary cirrhosis, and Indian childhood cirrhosis. Urinary copper concentrations are also useful to monitor patients on chealation therapy

Description: Copper RBC is a blood test that measures the amount of copper in the blood's red blood cells. Copper levels in the blood can help to diagnose Wilson's Disease.

Also Known As: Cu RBC Test, Cu Test, Blood Copper Test, RBC Copper Test, Hepatic Copper Test, Copper Blood Test

Collection Method: Blood Draw

Specimen Type: Red Blood Cells

Test Preparation: No preparation required

When is a Copper RBC test ordered?

When a health practitioner suspects Wilson disease, excess copper storage, or copper poisoning, one or more copper tests are requested along with ceruloplasmin.

When copper and ceruloplasmin results are abnormal or inconclusive, a hepatic copper test may be conducted to further evaluate copper storage.

What does a Copper RBC blood test check for?

Copper is an important mineral that the body uses to make enzymes. These enzymes are involved in the regulation of iron metabolism, the development of connective tissue, cellular energy production, the production of melanin, and nervous system function. This test determines how much copper is present in the blood, urine, or liver.

Nuts, chocolate, mushrooms, seafood, whole grains, dried fruits, and liver are all high in copper. Copper may be absorbed into drinking water as it passes through copper pipes, and copper may be absorbed into food as it is cooked or served on copper dishes. Copper is absorbed from food or liquids in the intestines, converted to a non-toxic form by binding it to a protein, and transported to the liver in normal circumstances. To make the enzyme ceruloplasmin, the liver saves some copper and binds the remainder to another protein called apoceruloplasmin. Ceruloplasmin binds about 95 percent of the copper in the blood, with the rest attached to other proteins like albumin. In a free condition, only a little amount is present in the blood. Excess copper is excreted by the liver in the bile, which is then excreted by the body in the feces. Copper is also excreted in the urine in small amounts.

Copper excess and deficiency are uncommon. Wilson disease is a rare genetic ailment that causes the liver, brain, and other organs to store too much copper. Excess copper can arise when a person is exposed to and absorbs high amounts of copper in a short period of time or little amounts over a long period of time.

Copper deficiency can arise in patients with severe malabsorption diseases such cystic fibrosis and celiac disease, as well as infants who are exclusively fed cow-milk formulas.

Menkes kinky hair syndrome is a rare X-linked hereditary disorder that causes copper shortage in the brain and liver of affected babies. Seizures, delayed development, aberrant artery growth in the brain, and unique gray brittle kinky hair are all symptoms of the condition, which mostly affects men.

Lab tests often ordered with a Copper RBC test:

  • Ceruloplasmin
  • Heavy Metals
  • ACTH
  • Aldosterone
  • 17-Hydroprogesterone
  • Growth Hormone

Conditions where a Copper RBC test is recommended:

  • Wilson Disease
  • Malnutrition

How does my health care provider use a Copper RBC test?

Copper testing is largely used to detect Wilson disease, a rare genetic ailment in which the liver, brain, and other organs accumulate an excessive amount of copper. A copper test is less usually used to detect copper excess caused by another ailment, to diagnose a copper deficit, or to track treatment for one of these conditions.

Copper is a necessary mineral, but too much of it can be harmful. The majority of it is bound to the enzyme ceruloplasmin in the blood, leaving only a little quantity "free" or unbound.

A whole blood copper test is usually ordered in conjunction with a ceruloplasmin level. If the findings of these tests are abnormal or ambiguous, a 24-hour urine copper test to monitor copper elimination and/or a copper test on a liver biopsy to check copper storage in the liver may be conducted.

A free blood copper test is sometimes ordered as well. If Wilson disease is suspected, genetic testing for mutations in the ATP7B gene may be undertaken. However, these tests are only available in a restricted number of locations and are usually carried out in specialized reference or research laboratories.

A copper test may be used to identify Menkes kinky hair syndrome, a rare inherited copper transport failure condition.

What do my Copper RBC test results mean?

Copper test findings are frequently linked to ceruloplasmin levels and considered in context. Copper results that are abnormal are not indicative of a specific illness; rather, they signal that more research is needed. Because ceruloplasmin is an acute phase reactant, it might be raised if inflammation or severe infections are present, making interpretation difficult. Ceruloplasmin and copper levels rise during pregnancy, as well as with the use of estrogen and oral contraceptives.

Wilson disease is characterized by low blood copper concentrations, elevated urine copper levels, low ceruloplasmin levels, and increased liver copper.

Elevated copper concentrations in the blood and urine, as well as normal or increased ceruloplasmin levels, may suggest excessive copper exposure or be linked to disorders that reduce copper excretion, such as chronic liver disease, or release copper from tissues, such as acute hepatitis. Chronic diseases can cause an increase in hepatic copper levels.

Copper deficiency is indicated by lower copper concentrations in the blood and urine, as well as lower ceruloplasmin levels.

A normal hepatic copper test could mean that copper metabolism is normal, or that the distribution of copper in the liver is uneven, and that the sample isn't reflective of the person's health.

If a person is being treated for Wilson disease or copper toxicity with copper-binding medicines, their 24-hour urine copper levels may be high until their body copper stores are depleted. Copper concentrations in the blood and urine should return to normal over time.

If a person is being treated for a copper deficient disorder and their ceruloplasmin and total copper levels start to rise, the condition is likely responding to the treatment.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.



A high Anti-Mitochondrial Antibody (AMA) titer supports the diagnosis of primary biliary cirrhosis (PBC). Low titers of AMA may be detected in other liver disorders, which include chronic active hepatitis and cryptogenic cirrhosis. Mitochondrial M2 Antibody has an even higher specificity for PBC.

If Mitochondrial Antibody Screen is positive, Mitochondrial Antibody Titer will be performed at an additional charge (CPT code(s): 86256).


Description: The Alpha-Fetoprotein and AFP-L3 test is a blood test used to detect the protein alpha-fetoprotein which is produced by the liver.

Also Known As: AFP Test, Total AFP Test, AFP-L3 Test, Alpha-Fetoprotein Tumor Markers, Alpha-Fetoprotein Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is an Alpha-Fetoprotein and AFP-L3 test ordered?

An AFP blood test may be ordered by a healthcare provider:

  • When abdominal masses are felt during a medical examination or imaging testing reveal possible malignancies, it is likely that someone has liver cancer or certain malignancies of the testicles or ovaries.
  • When someone has been diagnosed with and treated for cancer of the liver, testicles, or ovaries, the success of treatment is being assessed.
  • When someone is being watched for a recurrence of cancer
  • Patients with persistent hepatitis or liver cirrhosis should be followed up on.
  • When a person has chronic liver illness, an AFP-L3 percent is occasionally ordered to help evaluate the risk of hepatocellular carcinoma, test the efficiency of hepatocellular carcinoma treatment, or monitor for recurrence.

What does an Alpha-Fetoprotein and AFP-L3 blood test check for?

Alpha-fetoprotein is a protein produced predominantly by the liver of a developing baby and the yolk cavity of a developing embryo. When a baby is born, AFP levels are usually high and then rapidly drop. Liver injury and certain malignancies can drastically raise AFP levels. This test determines the amount of AFP in your blood.

When the liver cells regenerate, AFP is generated. AFP can be continuously high in chronic liver illnesses such hepatitis and cirrhosis. Certain cancers can produce extremely high quantities of AFP. Because of this, the AFP test can be used as a tumor marker. Many persons with hepatocellular carcinoma and hepatoblastoma, a kind of liver cancer that affects babies, have elevated levels of AFP. They're also discovered in certain persons who have testicular or ovarian cancer.

There are various different types of AFP. The normal AFP test measures total AFP, which includes all of the AFP variations. In the United States, this is the most common AFP test.

One of the AFP variations is known as L3 because of its propensity to attach to a protein called Lens culinaris agglutinin in the lab. The AFP-L3 percent test compares the quantity of AFP-L3 to the total amount of AFP and is a relatively recent test. Increased L3 levels are linked to a higher likelihood of developing hepatocellular carcinoma in the near future, as well as a worse prognosis, because L3-related malignancies are more aggressive.

AFP-L3 can be higher in people with hepatocellular carcinoma than in those with benign liver disorders who have low total AFP. In Japan, tumor markers such as total AFP and AFP-L3 are utilized in conjunction with ultrasound to monitor hepatocellular carcinoma. This procedure differs from that in the United States and Europe, but healthcare practitioners in the United States occasionally order the two tests.

Lab tests often ordered with an Alpha-Fetoprotein and AFP-L3 test:

  • CEA
  • CA-125
  • hCG Tumor Marker
  • DCP

Conditions where an Alpha-Fetoprotein and AFP-L3 test is recommended:

  • Ovarian Cancer
  • Testicular Cancer

How does my health care provider use an Alpha-Fetoprotein and AFP-L3 test?

The tumor marker alpha-fetoprotein is used to detect and diagnose malignancies of the liver, testicles, and ovaries. Despite the fact that the test is frequently done to monitor persons with chronic liver illnesses including cirrhosis, chronic hepatitis B, or hepatitis C who have an elevated lifetime risk of developing liver cancer, most current guidelines do not advocate it. An AFP test, together with imaging studies, may be ordered by a healthcare provider to try to diagnose liver cancer in its earliest and most treatable stages.

If a person has been diagnosed with hepatocellular carcinoma or another type of AFP-producing cancer, an AFP test may be done on a regular basis to assess treatment response and disease recurrence.

When comparing the amount of the AFP variation AFP-L3 to the total amount of AFP, an AFP-L3 percent is occasionally ordered. The AFP-L3 percent test is not extensively used in the United States, but it is becoming more popular in other nations, such as Japan. The test is used to assess the risk of developing hepatocellular carcinoma, particularly in people with chronic liver disease, as well as the response of the cancer to treatment.

What do my Alpha-fetoprotein test results mean?

Increased AFP levels can suggest the presence of cancer, such as liver cancer, ovarian cancer, or testicular germ cell tumors. However, not all cancers of the liver, ovary, or testicles produce substantial amounts of AFP.

Other malignancies, such as stomach, colon, lung, breast, and lymphoma, might sometimes have elevated levels, but it is rarely ordered to check these illnesses. Cirrhosis and hepatitis are two disorders that can generate elevated levels.

When using AFP as a monitoring tool, lower levels suggest a therapeutic response. If concentrations do not considerably drop after cancer therapy, usually to normal or near-normal levels, some tumor tissue may still be present.

If AFP levels start to rise, the cancer is most likely to return. However, because AFP levels can be deceiving in hepatitis or cirrhosis, AFP levels can be misleading. If AFP levels are not raised prior to therapy, the test will not be useful in monitoring treatment effectiveness or detecting recurrence.

People with chronic liver disease have a higher chance of getting liver cancer when their AFP levels rise from normal to moderately raised to significantly elevated. When total AFP and AFP-L3 percent are highly higher, the person is more likely to develop or have hepatocellular carcinoma in the next year or two. In persons with chronic hepatitis and cirrhosis, however, both AFP and AFP-L3 percent concentrations might be increased and fluctuate. In these circumstances, a significant increase in AFP is more essential than the test result's numerical value.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


IMPORTANT - The specimen for this test must be collected at a patient service center that can collect, store and transport frozen samples as outlined below.  

IMPORTANT: Before ordering this lab test, check and confirm with the selected patient service center to ensure that they can collect, store and transport frozen samples as outlined below.

Preferred Specimen(s) 

2 mL frozen plasma collected in an EDTA (lavender-top) tube

Collection Instructions 

Collect blood from stasis-free vein of patient (e.g., no tourniquet). Patient should not clench fist during collection, as muscular exertion often increases venous ammonia levels. Patient should avoid smoking prior to phlebotomy since smoking increases plasma ammonia levels. Tubes should be filled completely and kept tightly stoppered at all times. Place immediately on ice. Separate plasma from cells within 20 minutes and freeze plasma immediately.

Transport Temperature 

Frozen

Specimen Stability 

Room temperature: Unstable
Refrigerated: Unstable
Frozen -20° C: 72 hours
Frozen -70° C: 7 days

Reject Criteria 

Hemolysis • Lipemia • Received thawed • PPT Potassium EDTA (white-top) tube

Description: Ammonia Plasma is a blood test that checks for ammonia levels in your blood’s plasma, and is often ordered by physician’s after sever illness and/or mental changes in a patient to check for ammonia toxicity.

Also Known As: NH3 Test, NH3 Plasma Test, Ammonia Blood Test

Collection Method: Blood Draw

Specimen Type: Plasma

Test Preparation: No preparation required

When is an Ammonia test ordered?

An ammonia test may be required if an infant exhibits any of these symptoms within the first few days after delivery:

  • Irritability
  • Vomiting
  • Lethargy
  • Seizures

A medical professional may order an ammonia test if a child exhibits these symptoms a week after a viral infection like the flu or chicken pox or if they think the child might have Reye syndrome.

An ammonia level may be requested to help determine the source of the change in consciousness when individuals exhibit mental changes, disorientation, tiredness, or slide into a coma and may have liver disease or renal failure. When a person suddenly becomes more acutely ill, an ammonia level as well as other liver function tests may be requested in patients with stable liver disease.

What does an Ammonia blood test check for?

A byproduct of the breakdown of protein in the intestines, ammonia is largely produced by bacteria. Excess ammonia can build up in the blood if it is not properly digested and eliminated from the body. This examination calculates the blood's ammonia level.

Normally, ammonia travels through the blood to the liver, where it is transformed into the compounds urea and glutamine. Once at the kidneys, the urea is removed through the urine. Ammonia builds up in the blood and can enter the brain if this "urea cycle" does not completely break down the ammonia.

The brain is poisonous to ammonia. For instance, ammonia and other substances processed by the liver can build up in the brain and induce a condition known as hepatic encephalopathy when liver function is considerably impaired as a result of diseases like cirrhosis or hepatitis.

Mental and neurological abnormalities brought on by hepatic encephalopathy can result in confusion, disorientation, tiredness, eventually a coma, and even death.

Children and infants with elevated ammonia levels may vomit often, get agitated, and become progressively more sluggish. If untreated, they could develop respiratory problems, suffer seizures, or fall into a coma.

Lab tests often ordered with an Ammonia test:

  • Hepatic Function Panel
  • ALT
  • AST
  • ALP
  • Glucose
  • Electrolytes Panel
  • Renal Panel
  • Comprehensive Metabolic Panel

Conditions where an Ammonia test is recommended:

  • Liver Disease
  • Kidney Disease
  • Cirrhosis
  • Hepatitis

How does my health care provider use an Ammonia test?

The ammonia test is used to identify blood levels of ammonia that are elevated and may be brought on by conditions such severe liver illness, kidney failure, Reye syndrome, or a rare hereditary defect of the urea cycle. The test may be employed to aid in determining what is causing a person's changes in behavior and consciousness.

Ammonia is a waste product that the body naturally produces. It primarily results from bacteria in the intestines digesting protein. Excess ammonia can build up in the blood and travel into the brain, where it is poisonous, if the liver is not properly cleansed from the body and processing it.

In order to determine the etiology of a coma or to support the diagnosis of Reye syndrome or hepatic encephalopathy brought on by different liver illnesses, an ammonia test may be requested along with additional tests like glucose, electrolytes, kidney, and liver function tests. A uncommon urea cycle malfunction may also be diagnosed and the severity of the condition assessed using an ammonia level.

There is still debate over the clinical usefulness of the ammonia test for hepatic encephalopathy treatment monitoring among healthcare professionals. Blood ammonia levels do not accurately predict the severity of hepatic encephalopathy since the illness can be brought on by the accumulation of several poisons in the blood and brain.

What do my Ammonia test results mean?

The signs and symptoms of the individual may be brought on by an ammonia level in the blood that is much higher than normal. This signals that the body is not adequately removing and digesting ammonia from the body.

An abnormally high level in newborns can also be a sign of newborn hemolytic illness in addition to a hereditary urea cycle enzyme deficit or abnormality. Newborns frequently experience moderate, brief elevations in ammonia levels, which can rise and fall without manifesting any symptoms.

When children and teens with symptoms have elevated ammonia levels and low glucose levels, Reye syndrome may be present. A higher quantity can also be a sign of an unidentified urea cycle enzymatic malfunction.

An increased ammonia level in both children and adults may signal significant liver or renal impairment that has compromised the body's capacity to eliminate ammonia and that the brain may be harmed. Acute or persistent illnesses frequently act as triggers, raising ammonia levels to the point that a patient has trouble excreting the ammonia.

If a person's blood ammonia level is normal, it's possible that something other than too much ammonia is to blame for their signs and symptoms. Normal ammonia levels do not, however, rule out hepatic encephalopathy. Ammonia levels in the brain may be significantly greater than those in the blood, and other wastes may also play a role in modifications to mental processes and consciousness. This can make it challenging to relate a person's symptoms to ammonia blood levels.

With some types of hypertension, such as essential and malignant, the quantity of ammonia may be reduced.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: An Albumin test is a blood test used to screen for a diagnose kidney disease, liver disorders, and evaluate a patient’s nutritional status.

Also Known As: ALB Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is an Albumin test ordered?

A panel of tests is commonly ordered as part of a health check, including an albumin test.

If a person exhibits any of the following signs of a liver problem, an albumin test may be requested along with other tests:

  • skin or eyes turning yellow
  • weakness, exhaustion
  • Unaccounted-for weight loss
  • reduced appetite
  • edema and/or pain in the abdomen
  • Dark feces and pale urine
  • Itching

When someone exhibits the following nephrotic syndrome symptoms, for example:

  • Swelling or puffiness, especially in the face, wrists, abdomen, thighs, or ankles, or around the eyes
  • Foamy, bloody, or coffee-colored urine
  • a reduction in the urine's volume
  • problems urinating, such as a burning sensation or an unusual discharge, or a change in frequency, particularly at night
  • discomfort in the middle of the back, below the ribs, and next to the kidneys
  • elevated blood pressure

An albumin test may also be requested by a medical professional to assess or track a patient's nutritional condition. A reduction in albumin, however, needs to be carefully examined because, in addition to starvation, albumin concentrations respond to a number of other diseases.

What does an Albumin blood test check for?

The liver produces a protein called albumin. It has numerous roles and makes up roughly 60% of the blood's overall protein content. The amount of albumin in the blood is determined by this test.

Albumin nourishes tissues, transports hormones, vitamins, medicines, and chemicals like calcium throughout the body, and prevents fluid from seeping out of blood vessels. When factors affect the liver's ability to produce albumin, increase protein breakdown, increase protein loss through the kidneys, and/or increase plasma volume, albumin levels may decline to a greater or lower extent.

Low blood albumin can result from two key factors, including:

  • Severe liver disease: Since the liver produces albumin, its level may drop with loss of liver function; however, this is usually only the case in cases of severe liver illness.
  • Kidney disease: One of the kidneys' numerous jobs is to preserve plasma proteins like albumin so that they don't pass through the urine production process with other waste materials. High levels of albumin are found in the blood, and when the kidneys are working well, very little albumin is excreted in the urine. However, the ability to preserve albumin and other proteins starts to deteriorate if a person's kidneys become harmed or ill. Chronic disorders like diabetes and hypertension are prone to this. Extremely large amounts of albumin are lost through the kidneys in nephrotic syndrome.

Lab tests often ordered with an Albumin test:

  • Hepatic Function Panel
  • Comprehensive Metabolic Panel
  • Urine Albumin
  • Urinalysis
  • Total Protein
  • Creatinine
  • Blood Urea Nitrogen (BUN)
  • Renal Panel

Conditions where an Albumin test is recommended:

  • Liver Disease
  • Kidney Disease
  • Malnutrition
  • Proteinuria

How does my health care provider use an Albumin test?

An albumin test is widely used to assess a person's general health state since it is typically included in the panels of tests run as part of a health check, such as a thorough metabolic panel.

Albumin may also be used in a variety of situations to aid in the diagnosis of disease, to track changes in health status due to therapy or disease progression, and as a screen that may suggest the need for other types of testing because it can be low in a range of diseases and disorders.

The liver produces albumin, a protein that nourishes cells, prevents fluid from seeping out of blood vessels, carries hormones, vitamins, medications, and other chemicals like calcium throughout the body.

A creatinine, blood urea nitrogen, or renal panel may be ordered in addition to an albumin test to assess liver function or in conjunction with one of these tests to assess kidney function. Additionally, albumin can be requested to assess a person's nutritional status.

What do my Albumin test results mean?

The results of an albumin test are assessed in conjunction with those from other tests carried out concurrently, such as those in a comprehensive metabolic panel or during follow-up.

A low albumin level could be a red flag and a sign that more research may be necessary. A low albumin level could indicate a short-term issue that will go away on its own or it could indicate an acute or chronic disease that calls for medical attention.

When conditions affect albumin production, increase protein breakdown, increase protein loss, and/or expand plasma volume, albumin levels may decline to a greater or lower extent. Additional testing may be carried out to look into a low result, depending on the patient's medical history, signs and symptoms, and physical examination.

Low albumin levels may signal liver illness. To pinpoint precisely which sort of liver illness may be present, liver enzyme tests or a liver panel may be prescribed. However, until the disease has progressed to an advanced degree, a person with liver disease may have normal or nearly normal albumin levels. For instance, albumin is frequently low in cirrhotic individuals while albumin is typically normal in most chronic liver illnesses that have not progressed to cirrhosis.

Low albumin levels can be a sign of illnesses where the kidneys are unable to stop albumin from leaking into the urine and being lost. In this situation, tests for creatinine, BUN, or a renal panel may be requested, along with measurements of the albumin or protein levels in the urine.

Inflammation, shock, and starvation are among conditions that can cause low albumin levels. They may exhibit symptoms of diseases like Crohn's disease or celiac disease, which affect how well the body absorbs and digests protein, as well as circumstances where significant amounts of protein are wasted from the intestines.

A low albumin level can also occur in a number of different illnesses, including:

  • Infections
  • Burns
  • Surgery
  • chronic disease
  • Cancer
  • Diabetes
  • Hypothyroidism
  • the cancer syndrome
  • Plasma volume enlargement brought on by congestive heart failure and occasionally pregnancy
  • Dehydration can cause high albumin levels, albeit this condition is not routinely tracked or detected by the test.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: An Alkaline Phosphatase test or ALP is a blood test that is used to screen for and monitor liver disease, bone disorders, and gallbladder disease.

Also Known As: ALP Test, Alk Phos Test, Alkp Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is an Alkaline Phosphatase test ordered?

An ALP test may be requested as a standard laboratory test, frequently in conjunction with a liver panel of further assays. When a person exhibits signs of a liver or bone issue, it is frequently requested in conjunction with a number of additional tests.

What does an Alkaline Phosphatase test check for?

An enzyme called alkaline phosphatase is present in many bodily tissues. The cells that make up bone and the liver have the highest quantities of ALP. Liver illness or bone diseases are the most frequent causes of high blood levels of ALP. The blood's concentration of ALP is determined by this test.

ALP is located in the liver on the margins of cells that converge to form bile ducts, which are minuscule tubes that transport bile from the liver to the bowels, where it is required to aid in the digestion of dietary fat. Osteoblasts, specialized cells involved in bone production, are responsible for producing ALP in bone. Isoenzymes, which are produced in unique forms by each type of tissue, are ALP.

For instance, when one or more bile ducts are obstructed, ALP blood levels may significantly rise. Gallbladder inflammation or gallstones may be the cause of this. Blood ALP levels rise slightly more subtly in cirrhosis, liver cancer, hepatitis, and when liver-toxic medications are used.

Increased ALP levels can result from any condition that promotes excessive bone growth, including bone diseases like Paget's disease. Because their bones are still growing, children and adolescents often have higher blood ALP levels. Because of this, the ALP test needs to be interpreted differently for children and adults.

It is feasible to distinguish between the various ALP forms generated by various bodily tissues. A test may be run to identify which isoenzyme is elevated in the blood if it is unclear from clinical signs and symptoms whether the cause of a high ALP test result is liver or bone illness.

Lab tests often ordered with an Alkaline Phosphatase test:

  • AST
  • ALT
  • GGT
  • Bilirubin
  • Comprehensive Metabolic Panel
  • Hepatic Function Panel
  • Alkaline Phosphatase Isoenzymes

Conditions where an Alkaline Phosphatase test is recommended:

  • Lier Disease
  • Hepatitis
  • Cirrhosis
  • Jaundice
  • Osteoporosis
  • Paget’s Disease
  • Vitamin D Deficiency

How does my health care provider use an Alkaline Phosphatase test?

Using the alkaline phosphatase test, liver disease and bone diseases can be found.

Damaged liver cells produce more ALP into the blood under situations that harm the liver. Because ALP levels are particularly high at the margins of the cells that unite to form bile ducts, this test is frequently used to identify obstructed bile ducts. Blood levels of ALP are frequently high when one or more of them are blocked, such as by a tumor.

ALP levels in the blood can be impacted by any illness or disease that hinders bone development or increases bone cell activity. For instance, an ALP test may be used to identify tumors that have metastasized to the bones or to identify Paget's disease, a condition that results in deformed bones. This examination could occasionally be used to track the progress of patients being treated for Paget's disease or other bone disorders such vitamin D insufficiency.

Tests for the ALP isoenzyme may be performed to identify the cause if ALP readings are elevated but it is unclear whether this is related to liver or bone illness. To distinguish between liver and bone illness, one may additionally perform a GGT test and/or a test for 5'-nucleotidase. The levels of GGT and 5'-nucleotidase are elevated in liver illness but not in disorders of the bones.

What do my Alkaline Phosphatase test results mean?

High ALP typically indicates the presence of a disease that increases bone cell activity or liver damage.

The liver is typically where the elevated ALP is coming from if other liver tests, such as bilirubin, aspartate aminotransferase, or alanine aminotransferase, are also high. The high ALP is probably the result of liver illness if GGT or 5-nucleotidase levels are also elevated. If one of these two tests comes out normal, a bone issue is probably to blame for the high ALP. The ALP is typically coming from bone if calcium and/or phosphorus readings are abnormal.

A test for ALP isoenzymes may be required to differentiate between bone and liver ALP if it is unclear from signs and symptoms or other regular testing whether the high ALP is from the liver or bone.

ALP test findings are typically analyzed alongside those of other liver disease testing. ALP is commonly significantly less increased than AST and ALT in several types of liver illness, such as hepatitis. ALP and bilirubin may increase substantially higher than AST or ALT when the bile ducts are obstructed. ALP levels in liver cancer may also be higher.

ALP may be elevated in some bone illnesses, such as Paget's disease, which causes enlarged and misshapen bones, or in some cancers that extend to the bone.

ALP levels will eventually drop or return to normal if Paget's disease is successfully treated in a patient. ALP levels should fall if someone with liver or bone cancer responds to therapy.

Other illnesses include Hodgkin's lymphoma, congestive heart failure, ulcerative colitis, and specific bacterial infections can cause moderately high ALP.

ALP levels may briefly drop after cardiac bypass surgery or blood transfusions. Levels may drop as a result of a zinc deficiency. Hypophosphatasia, a rare genetic bone metabolism condition, can result in extremely low levels of ALP that persist for a long time. Wilson disease, protein insufficiency, and malnutrition are further potential reasons of low ALP.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: An ALT test is a blood test that is used to screen for and diagnose liver disease.

Also Known As: Alanine Aminotransferase Test, Alanine Transaminase Test, GPT Test, SGPT Test, Serum Glutamic Pyruvic Transaminase Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is an Alanine Transaminase test ordered?

When a person undergoes a standard health examination, ALT may be ordered as part of a full metabolic panel.

When a person has signs and symptoms of a liver problem, a healthcare provider will usually prescribe an ALT test.

Because many people with minor liver damage have no signs or symptoms, ALT may be ordered alone or in combination with other tests for persons who are at an elevated risk for liver disease. With modest liver injury, ALT levels will rise even if there are no other symptoms.

ALT may be ordered on a frequent basis during the course of treatment to establish whether the medication is effective when it is used to monitor the treatment of persons with liver disease.

What does an Alanine Transaminase blood test check for?

Alanine aminotransferase is an enzyme found mostly in liver and kidney cells. It's also found in much lesser concentrations in the heart and muscles. This test determines the amount of ALT in your blood.

The enzyme ALT converts alanine, a protein amino acid, into pyruvate, an important intermediary in cellular energy production. ALT levels in the blood are low in healthy people. ALT is released into the bloodstream when the liver is injured, frequently before more evident indications of liver injury, such as jaundice, appear. As a result, ALT is a useful test for detecting liver disease early on.

The liver is a critical organ positioned directly behind the rib cage on the upper right side of the abdomen. It is engaged in a variety of vital bodily functions. The liver aids in the digestion of nutrients, creates bile to aid in fat digestion, produces a variety of essential proteins such as blood clotting factors and albumin, and breaks down potentially hazardous compounds into safe substances that the body may utilize or discard.

Damage to liver cells can be caused by a variety of factors, resulting in an elevation in ALT. The test is most useful for detecting damage caused by hepatitis or medications or other toxins that are harmful to the liver.

As part of a liver panel, ALT is frequently tested alongside aspartate aminotransferase, another liver enzyme. When the liver is injured, both ALT and AST levels rise, albeit ALT is more specific for the liver and may be the only one to rise in some circumstances. An AST/ALT ratio can be used to help distinguish between different types of liver injury and their severity, as well as to distinguish liver injury from heart or muscle damage.

Lab tests often ordered with an Alanine Transaminase test:

  • AST
  • ALP
  • GGT
  • Bilirubin
  • Liver Panel
  • Comprehensive Metabolic Panel
  • Albumin
  • Total Protein
  • Prothrombin Time
  • Hepatitis Panel General

Conditions where a an Alanine Transaminase test is recommended:

  • Liver Disease
  • Hepatitis
  • Jaundice
  • Cirrhosis
  • Alcoholism
  • Wilson Disease
  • Hemochromatosis

How does my health care provider use an Alanine Transaminase test?

The alanine aminotransferase test is commonly used to diagnose liver damage. It's frequently ordered as part of a liver panel or complete metabolic panel with aspartate aminotransferase to screen for and/or diagnose liver disease.

ALT is an enzyme found mostly in liver and kidney cells. ALT is released into the bloodstream when the liver is injured. As a result, ALT is a useful test for detecting liver disease early on.

Although ALT is more specific to the liver than AST, they are both considered to be two of the most significant tests for detecting liver impairment. When AST is directly compared to ALT, an AST/ALT ratio is calculated. This ratio can assist distinguish between different types of liver disease and identify cardiac or muscle harm.

To assess which type of liver illness is present, ALT values are frequently matched to the results of other tests such as alkaline phosphatase, total protein, and bilirubin.

ALT is frequently requested to monitor the therapy of people with liver disease to evaluate if it is effective, and it can be ordered alone or in combination with other tests.

What do my ALT test results mean?

A low ALT level in the blood is normal and anticipated. The most prevalent cause of ALT levels that are higher than normal is liver disease.

Acute hepatitis and viral infections are the most common causes of very elevated ALT values. ALT levels are normally elevated for 1-2 months after acute hepatitis, but they might take up to 3-6 months to return to normal. ALT levels may also be significantly raised as a result of exposure to liver-toxic medications or other chemicals, or in situations that produce reduced blood flow (ischemia) to the liver.

In chronic hepatitis, ALT levels are frequently less than four times normal. Because ALT levels in this scenario regularly fluctuate between normal and slightly elevated, the test may be ordered frequently to observe if a trend emerges. Other reasons of mild ALT elevations include bile duct obstruction, cirrhosis, heart damage, alcohol addiction, and liver cancers.

ALT is frequently used in conjunction with an AST test or as part of a liver panel. See the Liver Panel article for more information on ALT values in relation to other liver tests.

The ALT level is usually greater than the AST level in most forms of liver disorders, and the AST/ALT ratio is low. There are a few exceptions: in alcoholic hepatitis, cirrhosis, and heart or muscle injury, the AST/ALT ratio is frequently more than 1, and it may be greater than 1 for a day or two after the onset of acute hepatitis.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: An AST blood test is a test that is used to screen for and diagnose liver disease.

Also Known As: Aspartate Aminotransferase Test, Serum Glutamic-Oxaloacetic Transaminase Test, SGOT Test Transaminase, Serum AST Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is an Aspartate Aminotransferase test ordered?

When someone undergoes a standard health examination, an AST test may be requested as part of a full metabolic panel.

When a person exhibits indications and symptoms of a liver problem, an AST test may be ordered along with numerous other tests.

Because many persons with minor liver damage have no signs or symptoms, AST may be ordered alone or in combination with other tests for people who are at an elevated risk for liver disease.

When AST is used to evaluate the effectiveness of treatment for people with liver disease, it may be ordered on a frequent basis during the course of treatment.

What does an Aspartate Aminotransferase blood test check for?

Aspartate aminotransferase is an enzyme found in cells all over the body, but especially in the heart and liver, as well as the kidneys and muscles to a lesser amount. AST levels in the blood are typically low in healthy people. AST is released into the bloodstream when liver or muscle cells are damaged. As a result, AST can be used to detect or monitor liver disease.

The liver is a critical organ found directly behind the rib cage in the upper right side of the abdomen. It is engaged in a variety of vital bodily functions. The liver aids in the digestion of nutrients, creates bile to aid in fat digestion, manufactures numerous vital proteins such as blood clotting factors, and breaks down potentially hazardous compounds into safe substances that the body may utilize or expel.

A variety of disorders can harm liver cells and cause AST levels to rise. The test is most effective in detecting liver damage caused by hepatitis, liver-toxic medications, cirrhosis, or alcoholism. AST, on the other hand, is not particular to the liver and can be elevated in diseases affecting other organs.

Alanine aminotransferase testing is frequently combined with an AST test. When the liver is injured, both of these enzymes become high in the bloodstream. A computed AST/ALT ratio can help distinguish between different types of liver injury and determine whether elevated levels are due to something else, such as a heart or muscle injury.

Lab tests often ordered with an Aspartate Aminotransferase test:

  • GGT
  • ALT
  • ALP
  • Bilirubin
  • Hepatic Function Panel
  • Comprehensive Metabolic Panel (CMP)
  • Albumin
  • Total Protein

Conditions where an Aspartate Aminotransferase test is recommended:

  • Liver Disease
  • Hepatitis
  • Jaundice
  • Alcoholism
  • Cirrhosis
  • Wilson Disease
  • Hemochromatosis

How does my health care provider use an Aspartate Aminotransferase test?

The aspartate aminotransferase blood test is commonly used to identify liver disease. It is frequently ordered in conjunction with alanine aminotransferase, another liver enzyme, or as part of a liver panel or comprehensive metabolic panel to screen for and/or diagnose liver problems.

Although ALT is more specific for the liver than AST and is more usually elevated than AST, both are regarded to be two of the most significant tests for detecting liver impairment. When AST is directly compared to ALT, an AST/ALT ratio is calculated. This ratio can be used to differentiate between different types of liver disease and hepatic harm from heart or muscle damage.

To assess which type of liver illness is present, AST levels are frequently compared to the results of other tests such as alkaline phosphatase, total protein, and bilirubin.

AST is frequently evaluated to monitor the treatment of people with liver disease, and it can be ordered alone or in combination with other tests.

AST is sometimes used to monitor persons who are receiving potentially hazardous drugs for the liver. If the person's AST levels rise, he or she may be moved to another medicine.

What do my AST test results mean?

Low AST levels in the blood are typical and anticipated.

Acute hepatitis and viral infections are the most common causes of very high AST values. AST values are normally elevated for 1-2 months after acute hepatitis, but they might take up to 3-6 months to recover to normal. AST levels can also be significantly high as a result of exposure to liver-toxic medications or other chemicals, as well as situations that produce reduced blood supply to the liver.

AST values are usually lower in chronic hepatitis, generally less than 4 times normal, and are more likely to be normal than ALT levels. With chronic hepatitis, AST levels typically fluctuate between normal and slightly elevated, so the test may be ordered repeatedly to detect the pattern. Other illnesses of the liver, particularly when the bile ducts are clogged, as well as cirrhosis and certain malignancies of the liver, can cause moderate increases. AST can also rise after a heart attack or a muscular damage, although to a far higher extent than ALT.

The AST test is frequently done in conjunction with the ALT test or as part of a liver panel. See the Liver Panel article for more information on AST values in relation to other liver tests.

The ALT level is usually greater than the AST level in most kinds of liver disease, and the AST/ALT ratio is low. There are a few exceptions: in alcoholic hepatitis, cirrhosis, hepatitis C virus-related chronic liver disease, and the first day or two of acute hepatitis or injury from bile duct obstruction, the AST/ALT ratio is frequently elevated. AST levels are generally substantially higher than ALT after cardiac or muscle injury, and they tend to stay higher than ALT for longer than they do after liver injury.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: The BNP test measures levels of B-Type Natriuretic peptide in your blood plasma to detect heart failure.

Also Known As: Brain Natriuretic Peptide Test

Collection Method: Blood Draw

Specimen Type: Plasma

Test Preparation: No preparation required

When is a B-Type Natriuretic Peptide test ordered?

When a person exhibits signs and symptoms that could indicate heart failure, a doctor may request a BNP test.

When someone is in a crisis or has symptoms that could be due to heart failure, testing may be done in the emergency room to identify if they have heart failure or another medical problem.

When a person is being treated for heart failure, several BNP tests may be performed throughout time to track the effects of the treatment.

What does a B-Type Natriuretic Peptide blood test check for?

N-terminal propeptide and B-type natriuretic peptide are chemicals created and released when the heart is strained and working hard to pump blood. BNP and NT-proBNP tests are used to detect and evaluate heart failure by measuring their levels in the blood.

Because it was first discovered in brain tissue, BNP was given the name brain natriuretic peptide. The left ventricle of the heart is the primary producer of BNP. It has to do with blood volume and pressure, as well as the amount of work the heart has to do in pumping blood around the body. The heart produces small amounts of a precursor protein called pro-BNP on a regular basis. The enzyme corin then cleaves pro-BNP, releasing the active hormone BNP and an inactive fragment, NT-proBNP, into the bloodstream.

When the heart’s left ventricle is stretched, the levels of BNP and NT-proBNP generated rise dramatically. This signifies that the heart is working harder and having more difficulty keeping up with the needs of the body. This might happen as a result of heart failure or other disorders that affect the heart and circulatory system. The term “heart failure” can be deceptive. It doesn’t mean the heart has stopped beating; it simply indicates it isn’t pumping blood as efficiently as it should be. This reduced capacity will be reflected in an increase in circulating BNP or NT-proBNP.

Lab tests often ordered with a B-Type Natriuretic Peptide test:

  • Troponin I
  • Creatine Kinase (CK)
  • Myoglobin
  • Hs-CRP
  • NT-proBNP
  • Comprehensive Metabolic Panel (CMP)
  • Electrolytes
  • Complete Blood Count (CBC)

Conditions where a B-Type Natriuretic Peptide test is recommended:

  • Congestive Heart Failure
  • Heart Disease
  • Angina
  • Heart Attack
  • Acute Coronary Syndrome

How does my health care provider use a B-Type Natriuretic Peptide test?

B-type natriuretic peptide testing is most commonly used to identify, diagnose, and assess the severity of heart failure. It can be used in conjunction with other cardiac biomarker tests to detect heart stress and damage, or it can be used in conjunction with lung function tests to differentiate between causes of shortness of breath. X-rays of the chest and an ultrasound test called echocardiogram may be used.

Heart failure can be misdiagnosed as other illnesses, and it can coexist with them. BNP levels can aid doctors in distinguishing between heart failure and other issues like pulmonary illness. Because the therapies are typically diverse and must be started as soon as possible, a precise diagnosis is critical.

Although BNP is commonly used to detect heart failure, an elevated level in those who have had an acute coronary syndrome implies a higher risk of repeat episodes. As a result, a health care provider can use BNP to assess the risk of a future cardiac attack in someone who has ACS.

What do my BNP test results mean?

Higher-than-normal results indicate that a person has heart failure, and the level of BNP in the blood is linked to the severity of the condition. BNP levels beyond a certain threshold are generally linked to a poor prognosis.

The person's symptoms are most likely caused by anything other than heart failure if the results are normal.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Most Popular
Measurement of the levels of bilirubin is used in the diagnosis and treatment of liver, hemolytic, hematologic, and metabolic disorders, including hepatitis and gall bladder obstruction. The assessment of direct bilirubin is helpful in the differentiation of hepatic disorders. The increase in total bilirubin associated with obstructive jaundice is primarily due to the direct (conjugated) fraction. Both direct and indirect bilirubin are increased in the serum with hepatitis.

Description: Bilirubin Fractionated is a blood test that is used to screen for or monitor liver disorders, hemolytic anemia, and neonatal jaundice.

Also Known As: Total Bilirubin Test, TBIL Test, Neonatal Bilirubin Test, Direct Bilirubin Test, Conjugated Bilirubin Test, Indirect Bilirubin Test, Unconjugated Bilirubin Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is a Bilirubin, Fractionated test ordered?

When someone shows evidence of abnormal liver function, a doctor will usually request a bilirubin test along with other laboratory tests. A bilirubin test may be ordered when a patient:

  • Evidence of jaundice is visible.
  • Has a history of excessive alcohol consumption
  • Has a possible drug toxicity
  • Has been exposed to viruses that cause hepatitis

Other signs and symptoms to look out for include:

  • Urine with a dark amber tint.
  • Nausea/vomiting
  • Swelling and/or pain in the abdomen
  • Fatigue and malaise which are common symptoms of chronic liver disease.

In babies with jaundice, measuring and monitoring bilirubin is considered routine medical therapy.

When someone is suspected of hemolytic anemia as a cause of anemia, bilirubin tests may be ordered. In this instance, it's frequently ordered in conjunction with other hemolysis-related tests such a complete blood count, reticulocyte count, haptoglobin, and LDH.

What does a Bilirubin, Fractionated blood test check for?

Bilirubin is an orange-yellow pigment that is largely formed as a byproduct of heme degradation. Heme is a component of hemoglobin, a red blood cell protein. Bilirubin is eventually digested by the liver, which allows it to be excreted from the body. This test assesses a person's liver function or aids in the diagnosis of anemias caused by RBC destruction by measuring the quantity of bilirubin in their blood.

After roughly 120 days in circulation, RBCs generally disintegrate. Heme is transformed to bilirubin as it is released from hemoglobin. Unconjugated bilirubin is another name for this type of bilirubin. Proteins transport unconjugated bilirubin to the liver, where sugars are linked to bilirubin to produce conjugated bilirubin. Conjugated bilirubin enters the bile and travels from the liver to the small intestines, where bacteria break it down further before it is excreted in the stool. As a result, bilirubin breakdown products give stool its distinctive brown hue.

A normal, healthy human produces a tiny quantity of bilirubin each day. The majority of bilirubin comes from damaged or degraded RBCs, with the rest coming from bone marrow or the liver. Small amounts of unconjugated bilirubin are normally discharged into the bloodstream, but there is almost no conjugated bilirubin. Laboratory tests can measure or estimate both types, and a total bilirubin result can be presented as well.

A person may appear jaundiced, with yellowing of the skin and/or whites of the eyes, if the bilirubin level in their blood rises. The pattern of bilirubin test results can provide information to the health care provider about the ailment that may be present. When there is an exceptional quantity of RBC destruction or when the liver is unable to handle bilirubin, unconjugated bilirubin levels may rise. Conversely, conjugated bilirubin levels can rise when the liver can process bilirubin but not transmit the conjugated bilirubin to the bile for elimination; this is most commonly caused by acute hepatitis or bile duct blockage.

In the first few days after birth, increased total and unconjugated bilirubin levels are fairly common in infants. This condition is known as "physiologic jaundice of the newborn," and it develops when the liver of a newborn is not yet mature enough to handle bilirubin. Physiologic jaundice in newborns usually goes away after a few days. RBCs may be damaged in newborn hemolytic illness due to blood incompatibility between the infant and the mother; in these circumstances, treatment may be necessary since large amounts of unconjugated bilirubin might harm the newborn's brain.

Increased total and conjugated bilirubin levels in infants can be caused by biliary atresia, an uncommon but life-threatening congenital disease. To avoid catastrophic liver damage that may necessitate liver transplantation during the first few years of life, this problem must be rapidly recognized and treated, usually with surgery. Despite early surgical therapy, some children may require liver transplants.

Lab tests often ordered with a Bilirubin, Fractionated test:

  • CMP
  • ALT
  • ALP
  • AST
  • Hepatitis A
  • Hepatitis B
  • Hepatitis C
  • Complete Blood Count (CBC)
  • Urinalysis
  • GGT
  • Reticulocyte Count

Conditions where a Bilirubin, Fractionated test is recommended:

  • Jaundice
  • Liver Disease
  • Hepatitis
  • Alcoholism
  • Hemolytic Anemia

Commonly Asked Questions:

How does my health care provider use a Bilirubin, Fractionated test?

A bilirubin test is used to detect an abnormally high quantity of the substance in the blood. It can be used to figure out what's causing your jaundice and/or diagnose illnesses like liver disease, hemolytic anemia, and bile duct blockage.

Bilirubin is an orange-yellow pigment that is largely formed as a byproduct of heme degradation. Heme is a component of hemoglobin, a red blood cell protein. Bilirubin is eventually digested by the liver, which allows it to be excreted from the body. An increased blood level can be caused by any disorder that speeds up the breakdown of RBCs or impairs the processing and elimination of bilirubin.

Laboratory testing can measure or estimate two types of bilirubin:

Unconjugated bilirubin—unconjugated bilirubin is formed when heme is released from hemoglobin. Proteins transport it to the liver. Small levels of the substance may be found in the blood.

Sugars are attached to bilirubin in the liver, resulting in conjugated bilirubin. It enters the bile and travels from the liver to the small intestines before being excreted in the feces. In normal circumstances, there is no conjugated bilirubin in the blood.

A chemical test is usually done to determine the total bilirubin level first. If the total bilirubin level rises, a second chemical test can be used to detect water-soluble forms of bilirubin, known as "direct" bilirubin. The amount of conjugated bilirubin present can be estimated using the direct bilirubin test. The "indirect" amount of unconjugated bilirubin can be estimated by subtracting the direct bilirubin level from the total bilirubin level. The pattern of bilirubin test results can provide information to the healthcare professional about the ailment that may be present.

Bilirubin is measured in adults and older children to:

  • Diagnose and/or monitor liver and bile duct disorders.
  • Evaluate patients with hemolytic anemia
  • Distinguish between the causes of jaundice in babies.

Only unconjugated bilirubin is raised in both physiologic jaundice and hemolytic illness of the infant.

Damage to the newborn's liver from neonatal hepatitis and biliary atresia will also raise conjugated bilirubin concentrations, which is generally the first indication that one of these less common disorders is present.

Because excessive unconjugated bilirubin harms growing brain cells, it is critical to detect and treat an increased amount of bilirubin in a newborn. Mental retardation, learning and developmental impairments, hearing loss, eye movement disorders, and mortality are all possible outcomes of this damage.

What do my bilirubin test results mean?

In adults and children, increased total bilirubin, primarily unconjugated bilirubin, could be caused by:

  • Hemolytic or pernicious anemia are two types of anemia.
  • Reaction to a transfusion
  • Cirrhosis
  • Gilbert syndrome

When conjugated bilirubin levels are higher than unconjugated bilirubin levels, there is usually a problem with bilirubin removal by the liver cells. This can be caused by a variety of factors, including:

  • Hepatitis caused by a virus
  • Reactions to drugs
  • Alcoholic hepatitis

When the bile ducts are blocked, conjugated bilirubin is raised more than unconjugated bilirubin. This can happen, for example, when:

  • In the bile ducts, there are gallstones.
  • Damaging of the bile ducts due to tumors

Increased bilirubin levels can also be caused by rare hereditary illnesses that involve aberrant bilirubin metabolism, such as Rotor, Dubin-Johnson, and Crigler-Najjar syndromes.

Low bilirubin levels are usually not a cause for worry and are not monitored.

A newborn's high bilirubin level may be transient and diminish within a few days to two weeks. However, if the bilirubin level exceeds a crucial threshold or rises rapidly, the cause must be investigated so that appropriate treatment can be started. Increased bilirubin levels can be caused by the rapid breakdown of red blood cells as a result of:

  • Incompatibility of the mother's blood type with that of her child
  • Infections that are present at birth
  • oxygen deficiency
  • Liver disease

Only unconjugated bilirubin is elevated in most of these disorders. In the rare disorders of biliary atresia and newborn hepatitis, increased conjugated bilirubin is found. To avoid liver damage, biliary atresia necessitates surgical surgery.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Measurement of the levels of bilirubin is used in the diagnosis and treatment of liver, hemolytic, hematologic, and metabolic disorders, including hepatitis and gallbladder obstructive disease.


Cirrhosis occurs when healthy liver tissue gets damaged over a long period of time. Chronic liver disease leads to scarring of liver tissue, which affects the structure and functionality of the liver. Cirrhosis is linked to over 32,000 annual deaths in the United States alone.  

A wide variety of chronic liver conditions could be responsible for cirrhosis. It takes years or even decades to develop the condition. Compared to scars that occur in most of the other parts of the body, liver scarring is reversible – even in patients with cirrhosis. The liver is located on the upper right-hand side of your abdomen and is a vital organ in the body. It converts nutrients from food into vital blood components, metabolizes, detoxifies, and produces many factors that are necessary for blood clotting. The liver also produces bile for the digestion of fats. 

Liver disease can affect all these functions. Liver disease can occur due to a wide variety of causes such as physical injuries, infections, autoimmune conditions, exposure to toxins, and genetic conditions that lead to the build-up of iron and copper. Liver disease can lead to inflammation, clotting abnormalities, obstruction of bile flow, and many other conditions. Persistent or prolonged damage to the liver results in accumulating excess connective tissue or fibrosis of the liver – which can lead to cirrhosis at a later stage.  

When one has cirrhosis, the structure of his/her liver will change – forming nodules of cells that are surrounded by fibrous tissue. Fibrous tissue won’t function like healthy liver tissue. It will interfere with the flow of bile and blood through the liver. Cirrhosis begins to affect many other organs and tissues throughout the body as the condition progresses. Some examples of cirrhosis complications include: 

  • Portal Hypertension – The pressure increases in the vein that carries blood to the liver.  
  • Swelling and bleeding of veins in the esophagus or stomach – this happens because of the increased pressure due to portal hypertension and the redirection of blood into the smaller veins. 
  • Increasing of blood toxins – which can lead to confusion and many other mental changes. 
  • Kidney disfunction 
  • Fluid build-up in the abdomen – Ascites 
  • Easy bleeding and bruising due to the decline in the production of clotting factor. 
  • Patients who suffer from cirrhosis are at a higher risk of developing liver cancer over time – about 3-5% of cirrhosis patients are supposed to get multiple cancers, including liver cancer in the long run. 

Causes:

When injury or damage to the liver is limited, it can repair itself. But when injury or damage is repeated over many years, it will result in liver cirrhosis.

There are many causes of liver cirrhosis, but they fall into one of these categories: 

  • Excessive use of alcohol over time can lead to alcoholic liver cirrhosis in the long run. 
  • Hepatitis conditions such as viral hepatitis, nonalcoholic fatty liver disease (NAFLD), and autoimmune hepatitis 
  • Damage to bile ducts or biliary obstruction 
  • Congestive heart failure can result in liver damage and cirrhosis in the long run. 
  • Drug and toxin-related conditions 
  • Metabolic or inherited conditions such as hemochromatosis, cystic fibrosis, and Wilson disease 
  • In about 10% of cirrhosis cases, the actual cause is unknown. 

The causes of liver cirrhosis may vary by population or geographic region. Over 50% of the cases in the United States are caused due to alcoholism or chronic hepatitis C infection. Chronic hepatitis B infection coupled with hepatitis D co-infection leads to a significant number of cirrhosis cases in other parts of the world. Nonalcoholic steatohepatitis (NASH) and nonalcoholic fatty liver disease (NAFLD) are two of the most common causes of non-infectious cirrhosis. The frequency of this cause is increasing across the globe. 

Symptoms of Liver Cirrhosis 

Most people who suffer from the condition don’t have or have little clinical evidence of the disease. Symptoms don’t usually occur until significant scarring of the liver has occurred. Some of the symptoms of the condition include: 

  • Weakness 
  • Fatigue 
  • Confusion and difficulty in concentrating 
  • Itching 
  • Abdominal discomfort 
  • Jaundice 
  • Abdominal swelling due to ascites or build-up of fluid in the abdomen 
  • Leg swelling 
  • Easy bruising and bleeding 
  • Nausea 
  • Loss of appetite and weight loss 

Tests 

Cirrhosis needs to be diagnosed as soon as possible to have a chance of saving the life of the patient. If not, significant liver damage could occur with little or no clinical evidence of the condition. When the cause of the liver disease is controlled or eliminated, the scarring will stop, and some existing scars may resolve. There isn’t a specific test to diagnose liver cirrhosis. But blood tests can help detect liver injury. A liver biopsy is the best test to diagnose cirrhosis. But the procedure is invasive and won’t detect every case. 

Routine laboratory tests can help detect liver damage or scarring. These tests can help evaluate the severity of the condition in case the patient has some risk factors of developing cirrhosis. The patient may need additional tests to diagnose the underlying cause of the condition and monitor his or her health in the long run. It includes monitoring the development of hepatocellular carcinoma. 

Routine Tests 

Liver injury is usually diagnosed by a liver panel or a comprehensive metabolic panel (CMP).

Here are some tests included in these panels: 

  • Aspartate aminotransferase (AST) – AST is an enzyme found in the liver and many other organs in the body. AST will be elevated if a person has a liver injury or cirrhosis. 
  • Alanine aminotransferase (ALT) – This enzyme is found mainly in the liver. The values will be increased when a person has a liver disease or cirrhosis. 
  • Alkaline phosphatase (ALP) – ALP is an enzyme found in the bile ducts. When one has cirrhosis, ALP can be normal or mildly elevated.  
  • Total bilirubin – Bilirubin is produced exclusively in the liver. It increases with most liver conditions. Bilirubin is either normal or slightly increased until cirrhosis becomes advanced. 
  • Albumin – This is a protein made by the liver and decreases when one has cirrhosis. 

If any of these test results are abnormal, one needs to further investigate the cause of it. The pattern of results will be more informative than any single test. 

Complete Blood Count or CBC – This test is ordered to evaluate the red and white blood cells and platelets. Anemia can occur if bleeding has occurred. Platelets become decreased when one has cirrhosis. 

Prothrombin Time (PT/INR) – Most of the clotting factors are produced in the liver. This test is important to evaluate the clotting function. The results can be prolonged with cirrhosis. 

These tests are used to monitor the progression of cirrhosis. As the condition progresses, the results can become increasingly abnormal.  

Additional Testing 

If a patient has chronic liver disease, the healthcare provider will order hepatitis C and B testing to determine the underlying cause of the condition. If ascites is present, your healthcare provider will order a peritoneal fluid analysis test. A liver biopsy is done to diagnose the cause of the condition. It involves taking a sample of liver tissue to evaluate the structure and cells of the liver. A biopsy will clearly indicate the presence of cirrhosis. But since the sample is tiny, a negative result cannot rule out cirrhosis. Depending on the situation, one or more of these specialized tests may be performed: