Metabolic Syndrome

Metabolic Syndrome Lab Testing and health information

The metabolic syndrome tests measure the metabolic changes associated with an increased risk for developing cardiovascular disease (CVD) and type 2 diabetes mellitus. Our tests include HDL cholesterol level, triglyceride level, and fasting blood sugar. Order from Ulta Lab Tests today with results sent confidentially online. 


Name Matches
Identifying patients who have metabolic syndrome and who are thus at higher risk of diabetes, coronary heart disease or stroke. Identifying patients who are insulin resistant (fasting insulin at or above the 75th percentile) and who are thus at higher risk of diabetes, coronary heart disease, stroke, or liver disease. Monitoring of risk factors and insulin levels after life style change, medication use, or both.



Metabolic Discovery Comprehensive Panel

This thorough set of tests helps assess your metabolism. Are you storing too much fat and sugar or perhaps too little? Are you insulin resistant with subsequent inflammation? You can run this panel to discover whether your diet, fitness and nutritional habits are providing you the metabolic health and longevity you deserve. Don’t settle for one-size-fits-all health advice.

Preparation: Fast for 10-16 hours, overnight. Drink enough water and take your prescribed medications. No coffee or vigorous exercise on the morning of the blood draw.

CONTAINS ALL OF THE TESTS IN THE Metabolic Discovery Panel

  • CBC (includes Differential and Platelets)
  • Comprehensive Metabolic Panel (CMP)
  • Ferritin
  • Hemoglobin A1c with eAG
  • Insulin
  • Lipid Panel with Ratios
  • Vitamin B12 (Cobalamin)
  • Vitamin D, 25-Hydroxy, Total, Immunoassay

PLUS

  • Adiponectin 
  • Iron and Total Iron Binding Capacity (TIBC)
  • Leptin
  • T3, Free
  • T4, Free
  • TSH

Most Popular
The adiponectin ELISA assay quantitatively measures human adiponectin in serum. It has been shown that decreased expression of adiponectin correlates with insulin resistance. Adiponectin appears to be a potent insulin enhancer linking adipose tissue and whole body glucose metabolism.

Description: An Albumin test is a blood test used to screen for a diagnose kidney disease, liver disorders, and evaluate a patient’s nutritional status.

Also Known As: ALB Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is an Albumin test ordered?

A panel of tests is commonly ordered as part of a health check, including an albumin test.

If a person exhibits any of the following signs of a liver problem, an albumin test may be requested along with other tests:

  • skin or eyes turning yellow
  • weakness, exhaustion
  • Unaccounted-for weight loss
  • reduced appetite
  • edema and/or pain in the abdomen
  • Dark feces and pale urine
  • Itching

When someone exhibits the following nephrotic syndrome symptoms, for example:

  • Swelling or puffiness, especially in the face, wrists, abdomen, thighs, or ankles, or around the eyes
  • Foamy, bloody, or coffee-colored urine
  • a reduction in the urine's volume
  • problems urinating, such as a burning sensation or an unusual discharge, or a change in frequency, particularly at night
  • discomfort in the middle of the back, below the ribs, and next to the kidneys
  • elevated blood pressure

An albumin test may also be requested by a medical professional to assess or track a patient's nutritional condition. A reduction in albumin, however, needs to be carefully examined because, in addition to starvation, albumin concentrations respond to a number of other diseases.

What does an Albumin blood test check for?

The liver produces a protein called albumin. It has numerous roles and makes up roughly 60% of the blood's overall protein content. The amount of albumin in the blood is determined by this test.

Albumin nourishes tissues, transports hormones, vitamins, medicines, and chemicals like calcium throughout the body, and prevents fluid from seeping out of blood vessels. When factors affect the liver's ability to produce albumin, increase protein breakdown, increase protein loss through the kidneys, and/or increase plasma volume, albumin levels may decline to a greater or lower extent.

Low blood albumin can result from two key factors, including:

  • Severe liver disease: Since the liver produces albumin, its level may drop with loss of liver function; however, this is usually only the case in cases of severe liver illness.
  • Kidney disease: One of the kidneys' numerous jobs is to preserve plasma proteins like albumin so that they don't pass through the urine production process with other waste materials. High levels of albumin are found in the blood, and when the kidneys are working well, very little albumin is excreted in the urine. However, the ability to preserve albumin and other proteins starts to deteriorate if a person's kidneys become harmed or ill. Chronic disorders like diabetes and hypertension are prone to this. Extremely large amounts of albumin are lost through the kidneys in nephrotic syndrome.

Lab tests often ordered with an Albumin test:

  • Hepatic Function Panel
  • Comprehensive Metabolic Panel
  • Urine Albumin
  • Urinalysis
  • Total Protein
  • Creatinine
  • Blood Urea Nitrogen (BUN)
  • Renal Panel

Conditions where an Albumin test is recommended:

  • Liver Disease
  • Kidney Disease
  • Malnutrition
  • Proteinuria

How does my health care provider use an Albumin test?

An albumin test is widely used to assess a person's general health state since it is typically included in the panels of tests run as part of a health check, such as a thorough metabolic panel.

Albumin may also be used in a variety of situations to aid in the diagnosis of disease, to track changes in health status due to therapy or disease progression, and as a screen that may suggest the need for other types of testing because it can be low in a range of diseases and disorders.

The liver produces albumin, a protein that nourishes cells, prevents fluid from seeping out of blood vessels, carries hormones, vitamins, medications, and other chemicals like calcium throughout the body.

A creatinine, blood urea nitrogen, or renal panel may be ordered in addition to an albumin test to assess liver function or in conjunction with one of these tests to assess kidney function. Additionally, albumin can be requested to assess a person's nutritional status.

What do my Albumin test results mean?

The results of an albumin test are assessed in conjunction with those from other tests carried out concurrently, such as those in a comprehensive metabolic panel or during follow-up.

A low albumin level could be a red flag and a sign that more research may be necessary. A low albumin level could indicate a short-term issue that will go away on its own or it could indicate an acute or chronic disease that calls for medical attention.

When conditions affect albumin production, increase protein breakdown, increase protein loss, and/or expand plasma volume, albumin levels may decline to a greater or lower extent. Additional testing may be carried out to look into a low result, depending on the patient's medical history, signs and symptoms, and physical examination.

Low albumin levels may signal liver illness. To pinpoint precisely which sort of liver illness may be present, liver enzyme tests or a liver panel may be prescribed. However, until the disease has progressed to an advanced degree, a person with liver disease may have normal or nearly normal albumin levels. For instance, albumin is frequently low in cirrhotic individuals while albumin is typically normal in most chronic liver illnesses that have not progressed to cirrhosis.

Low albumin levels can be a sign of illnesses where the kidneys are unable to stop albumin from leaking into the urine and being lost. In this situation, tests for creatinine, BUN, or a renal panel may be requested, along with measurements of the albumin or protein levels in the urine.

Inflammation, shock, and starvation are among conditions that can cause low albumin levels. They may exhibit symptoms of diseases like Crohn's disease or celiac disease, which affect how well the body absorbs and digests protein, as well as circumstances where significant amounts of protein are wasted from the intestines.

A low albumin level can also occur in a number of different illnesses, including:

  • Infections
  • Burns
  • Surgery
  • chronic disease
  • Cancer
  • Diabetes
  • Hypothyroidism
  • the cancer syndrome
  • Plasma volume enlargement brought on by congestive heart failure and occasionally pregnancy
  • Dehydration can cause high albumin levels, albeit this condition is not routinely tracked or detected by the test.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: An Alkaline Phosphatase test or ALP is a blood test that is used to screen for and monitor liver disease, bone disorders, and gallbladder disease.

Also Known As: ALP Test, Alk Phos Test, Alkp Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is an Alkaline Phosphatase test ordered?

An ALP test may be requested as a standard laboratory test, frequently in conjunction with a liver panel of further assays. When a person exhibits signs of a liver or bone issue, it is frequently requested in conjunction with a number of additional tests.

What does an Alkaline Phosphatase test check for?

An enzyme called alkaline phosphatase is present in many bodily tissues. The cells that make up bone and the liver have the highest quantities of ALP. Liver illness or bone diseases are the most frequent causes of high blood levels of ALP. The blood's concentration of ALP is determined by this test.

ALP is located in the liver on the margins of cells that converge to form bile ducts, which are minuscule tubes that transport bile from the liver to the bowels, where it is required to aid in the digestion of dietary fat. Osteoblasts, specialized cells involved in bone production, are responsible for producing ALP in bone. Isoenzymes, which are produced in unique forms by each type of tissue, are ALP.

For instance, when one or more bile ducts are obstructed, ALP blood levels may significantly rise. Gallbladder inflammation or gallstones may be the cause of this. Blood ALP levels rise slightly more subtly in cirrhosis, liver cancer, hepatitis, and when liver-toxic medications are used.

Increased ALP levels can result from any condition that promotes excessive bone growth, including bone diseases like Paget's disease. Because their bones are still growing, children and adolescents often have higher blood ALP levels. Because of this, the ALP test needs to be interpreted differently for children and adults.

It is feasible to distinguish between the various ALP forms generated by various bodily tissues. A test may be run to identify which isoenzyme is elevated in the blood if it is unclear from clinical signs and symptoms whether the cause of a high ALP test result is liver or bone illness.

Lab tests often ordered with an Alkaline Phosphatase test:

  • AST
  • ALT
  • GGT
  • Bilirubin
  • Comprehensive Metabolic Panel
  • Hepatic Function Panel
  • Alkaline Phosphatase Isoenzymes

Conditions where an Alkaline Phosphatase test is recommended:

  • Lier Disease
  • Hepatitis
  • Cirrhosis
  • Jaundice
  • Osteoporosis
  • Paget’s Disease
  • Vitamin D Deficiency

How does my health care provider use an Alkaline Phosphatase test?

Using the alkaline phosphatase test, liver disease and bone diseases can be found.

Damaged liver cells produce more ALP into the blood under situations that harm the liver. Because ALP levels are particularly high at the margins of the cells that unite to form bile ducts, this test is frequently used to identify obstructed bile ducts. Blood levels of ALP are frequently high when one or more of them are blocked, such as by a tumor.

ALP levels in the blood can be impacted by any illness or disease that hinders bone development or increases bone cell activity. For instance, an ALP test may be used to identify tumors that have metastasized to the bones or to identify Paget's disease, a condition that results in deformed bones. This examination could occasionally be used to track the progress of patients being treated for Paget's disease or other bone disorders such vitamin D insufficiency.

Tests for the ALP isoenzyme may be performed to identify the cause if ALP readings are elevated but it is unclear whether this is related to liver or bone illness. To distinguish between liver and bone illness, one may additionally perform a GGT test and/or a test for 5'-nucleotidase. The levels of GGT and 5'-nucleotidase are elevated in liver illness but not in disorders of the bones.

What do my Alkaline Phosphatase test results mean?

High ALP typically indicates the presence of a disease that increases bone cell activity or liver damage.

The liver is typically where the elevated ALP is coming from if other liver tests, such as bilirubin, aspartate aminotransferase, or alanine aminotransferase, are also high. The high ALP is probably the result of liver illness if GGT or 5-nucleotidase levels are also elevated. If one of these two tests comes out normal, a bone issue is probably to blame for the high ALP. The ALP is typically coming from bone if calcium and/or phosphorus readings are abnormal.

A test for ALP isoenzymes may be required to differentiate between bone and liver ALP if it is unclear from signs and symptoms or other regular testing whether the high ALP is from the liver or bone.

ALP test findings are typically analyzed alongside those of other liver disease testing. ALP is commonly significantly less increased than AST and ALT in several types of liver illness, such as hepatitis. ALP and bilirubin may increase substantially higher than AST or ALT when the bile ducts are obstructed. ALP levels in liver cancer may also be higher.

ALP may be elevated in some bone illnesses, such as Paget's disease, which causes enlarged and misshapen bones, or in some cancers that extend to the bone.

ALP levels will eventually drop or return to normal if Paget's disease is successfully treated in a patient. ALP levels should fall if someone with liver or bone cancer responds to therapy.

Other illnesses include Hodgkin's lymphoma, congestive heart failure, ulcerative colitis, and specific bacterial infections can cause moderately high ALP.

ALP levels may briefly drop after cardiac bypass surgery or blood transfusions. Levels may drop as a result of a zinc deficiency. Hypophosphatasia, a rare genetic bone metabolism condition, can result in extremely low levels of ALP that persist for a long time. Wilson disease, protein insufficiency, and malnutrition are further potential reasons of low ALP.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: An ALT test is a blood test that is used to screen for and diagnose liver disease.

Also Known As: Alanine Aminotransferase Test, Alanine Transaminase Test, GPT Test, SGPT Test, Serum Glutamic Pyruvic Transaminase Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is an Alanine Transaminase test ordered?

When a person undergoes a standard health examination, ALT may be ordered as part of a full metabolic panel.

When a person has signs and symptoms of a liver problem, a healthcare provider will usually prescribe an ALT test.

Because many people with minor liver damage have no signs or symptoms, ALT may be ordered alone or in combination with other tests for persons who are at an elevated risk for liver disease. With modest liver injury, ALT levels will rise even if there are no other symptoms.

ALT may be ordered on a frequent basis during the course of treatment to establish whether the medication is effective when it is used to monitor the treatment of persons with liver disease.

What does an Alanine Transaminase blood test check for?

Alanine aminotransferase is an enzyme found mostly in liver and kidney cells. It's also found in much lesser concentrations in the heart and muscles. This test determines the amount of ALT in your blood.

The enzyme ALT converts alanine, a protein amino acid, into pyruvate, an important intermediary in cellular energy production. ALT levels in the blood are low in healthy people. ALT is released into the bloodstream when the liver is injured, frequently before more evident indications of liver injury, such as jaundice, appear. As a result, ALT is a useful test for detecting liver disease early on.

The liver is a critical organ positioned directly behind the rib cage on the upper right side of the abdomen. It is engaged in a variety of vital bodily functions. The liver aids in the digestion of nutrients, creates bile to aid in fat digestion, produces a variety of essential proteins such as blood clotting factors and albumin, and breaks down potentially hazardous compounds into safe substances that the body may utilize or discard.

Damage to liver cells can be caused by a variety of factors, resulting in an elevation in ALT. The test is most useful for detecting damage caused by hepatitis or medications or other toxins that are harmful to the liver.

As part of a liver panel, ALT is frequently tested alongside aspartate aminotransferase, another liver enzyme. When the liver is injured, both ALT and AST levels rise, albeit ALT is more specific for the liver and may be the only one to rise in some circumstances. An AST/ALT ratio can be used to help distinguish between different types of liver injury and their severity, as well as to distinguish liver injury from heart or muscle damage.

Lab tests often ordered with an Alanine Transaminase test:

  • AST
  • ALP
  • GGT
  • Bilirubin
  • Liver Panel
  • Comprehensive Metabolic Panel
  • Albumin
  • Total Protein
  • Prothrombin Time
  • Hepatitis Panel General

Conditions where a an Alanine Transaminase test is recommended:

  • Liver Disease
  • Hepatitis
  • Jaundice
  • Cirrhosis
  • Alcoholism
  • Wilson Disease
  • Hemochromatosis

How does my health care provider use an Alanine Transaminase test?

The alanine aminotransferase test is commonly used to diagnose liver damage. It's frequently ordered as part of a liver panel or complete metabolic panel with aspartate aminotransferase to screen for and/or diagnose liver disease.

ALT is an enzyme found mostly in liver and kidney cells. ALT is released into the bloodstream when the liver is injured. As a result, ALT is a useful test for detecting liver disease early on.

Although ALT is more specific to the liver than AST, they are both considered to be two of the most significant tests for detecting liver impairment. When AST is directly compared to ALT, an AST/ALT ratio is calculated. This ratio can assist distinguish between different types of liver disease and identify cardiac or muscle harm.

To assess which type of liver illness is present, ALT values are frequently matched to the results of other tests such as alkaline phosphatase, total protein, and bilirubin.

ALT is frequently requested to monitor the therapy of people with liver disease to evaluate if it is effective, and it can be ordered alone or in combination with other tests.

What do my ALT test results mean?

A low ALT level in the blood is normal and anticipated. The most prevalent cause of ALT levels that are higher than normal is liver disease.

Acute hepatitis and viral infections are the most common causes of very elevated ALT values. ALT levels are normally elevated for 1-2 months after acute hepatitis, but they might take up to 3-6 months to return to normal. ALT levels may also be significantly raised as a result of exposure to liver-toxic medications or other chemicals, or in situations that produce reduced blood flow (ischemia) to the liver.

In chronic hepatitis, ALT levels are frequently less than four times normal. Because ALT levels in this scenario regularly fluctuate between normal and slightly elevated, the test may be ordered frequently to observe if a trend emerges. Other reasons of mild ALT elevations include bile duct obstruction, cirrhosis, heart damage, alcohol addiction, and liver cancers.

ALT is frequently used in conjunction with an AST test or as part of a liver panel. See the Liver Panel article for more information on ALT values in relation to other liver tests.

The ALT level is usually greater than the AST level in most forms of liver disorders, and the AST/ALT ratio is low. There are a few exceptions: in alcoholic hepatitis, cirrhosis, and heart or muscle injury, the AST/ALT ratio is frequently more than 1, and it may be greater than 1 for a day or two after the onset of acute hepatitis.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: Apo A1 and B is a blood test that measures that amount of Apolipoprotein A1 and Apolipoprotein B in the blood’s serum along with the ratio between B/A1. This test is used to assess cardiovascular risk. Low levels of APO A1 are associated with Coronary Artery Disease (CAD) and are said to predict CAD better then triglycerides and HDL does.

Also Known As: Apo A1 and B Test, Apo A1 Test, Apo B Test, APOAB Test, Apolipoprotein B-100 Test, Apolipoprotein Evaluation Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: Fasting for 12 hours is required.

When are Apolipoprotein A1 and B tests ordered?

Apolipoprotein A-I and B, as well as other lipid tests, may be ordered as part of a screening to identify a person's risk of cardiovascular disease.

Apo A-I is a protein that plays a key function in lipid metabolism and is the most abundant protein in HDL, or "good cholesterol." Excess cholesterol in cells is removed by HDL, which transports it to the liver for recycling or elimination. Apo A-I levels tend to rise and fall with HDL levels, and apo A-I deficits are linked to an increased risk of CVD.

Apo B is a protein that plays a role in lipid metabolism and is the major protein component of lipoproteins including VLDL and LDL, popularly known as "bad cholesterol." Apo B concentrations are similar to LDL-C concentrations.

What does Apolipoprotein A1 and B blood tests check for?

Lipids are transported throughout the bloodstream by apolipoproteins, which mix with them. Lipoproteins are held together by apolipoproteins, which protect the water-repellent lipids at their core.

Lipoproteins are cholesterol or triglyceride-rich proteins that transport lipids throughout the body for cell absorption. HDL, on the other hand, is like an empty cab or taxi. It travels to the tissues to collect excess cholesterol before returning it to the liver. Cholesterol is either recycled for future use or eliminated in bile in the liver. The only mechanism for cells to get rid of excess cholesterol is by HDL reverse transport. It protects the arteries and, if enough HDL is present, it can even reverse the formation of fatty plaques, which are deposits caused by atherosclerosis and can contribute to cardiovascular disease.

Sticking with the taxi analogy, the driver is Apolipoprotein A. It permits HDL to be detected and bound by receptors in the liver at the end of the transport by activating the enzymes that load cholesterol from the tissues into HDL. Apolipoprotein A is divided into two types: apo A-I and apo A-II. Apo A-I has a higher prevalence than apo A-II. Apo A-I concentrations can be evaluated directly, and they tend to rise and fall in tandem with HDL levels. Deficiencies in apo A-I are linked to an increased risk of cardiovascular disease.

Chylomicrons are lipoprotein particles that transport dietary fats from the digestive system to tissue, primarily the liver, via the bloodstream. These dietary lipids are repackaged in the liver and combined with apo B-100 to create triglyceride-rich VLDL. This combo is similar to a taxi with a full load of passengers and apo B-100 as the driver. The taxi moves from place to place in the bloodstream, releasing one passenger at a time.

Triglycerides are removed from VLDL by an enzyme called lipoprotein lipase, which produces intermediate density lipoproteins first, then LDL. VLDL contains one molecule of apo B-100, which is kept as VLDL loses triglycerides and shrinks to become the cholesterol-rich LDL. Apo B-100 is detected by receptors on the surface of many different types of cells in the body. The absorption of cholesterol into cells is aided by these receptors.

LDL and apo B-100 transport cholesterol that is essential for cell membrane integrity, sex hormone generation, and steroid production. Excess LDL, on the other hand, can cause fatty deposits in artery walls, as well as blood vessel hardening and scarring. Atherosclerosis is a condition in which fatty deposits restrict blood arteries. The risk of a heart attack increases as the atherosclerotic process progresses.

LDL-C levels, which are typically ordered as part of a lipid profile, tend to mimic Apo B-100 levels. Many experts believe that apo B levels will eventually show to be a more accurate predictor of CVD risk than LDL-C. Others disagree, believing that vitamin B is only a modestly superior choice and that it should not be used on a regular basis. The clinical utility of apo B, as well as other developing cardiac risk markers including apo A-I, Lp(a), and hs-CRP, is still unknown.

Lab tests often ordered with Apolipoprotein A1 and B tests:

  • Cholesterol Total
  • HDL Cholesterol
  • LDL Cholesterol
  • Triglycerides
  • Lipid Panel
  • Lipoprotein (a)
  • Homocysteine
  • hs-CRP
  • Lipoprotein Fractionation, Ion Mobility

Conditions where Apolipoprotein A1 and B tests are recommended:

  • Cardiovascular Disease
  • Heart Attack
  • Stroke
  • Congestive Heart Failure
  • Angina

How does my health care provider use Apolipoprotein A1 and B tests?

An apo B/apo A-I ratio can be determined by ordering both an apo A-I and an apo B test. To assess the risk of developing CVD, this ratio is sometimes used instead of the total cholesterol/HDL ratio.

An apo A-I test may be ordered in the following situations:

Assist in the diagnosis of apo A-I deficiency caused by genetic or acquired diseases.

Assist those with a personal or family history of heart disease, high cholesterol, or triglycerides in their blood.

Keep track of how well lifestyle changes and lipid therapies are working.

An apo A-I test can be ordered in conjunction with an apo B test to determine the apo B/apo A-I ratio. This ratio is occasionally used instead of the total cholesterol/HDL ratio to assess the risk of developing CVD.

As an alternative to non-HDL-C, Apo B levels may be ordered to assess the success of lipid treatment.

An apo B test may be conducted in rare circumstances to assist determine a genetic issue that causes apo B overproduction or underproduction.

What do my Apolipoprotein A1 and B test results mean?

Low apo A-I levels are linked to low HDL levels and slowed elimination of excess cholesterol from the body. Low levels of apo A-I, as well as high levels of apo B, are linked to a higher risk of cardiovascular disease.

Deficiencies in apo A-I are caused by a number of hereditary diseases. Abnormal lipid levels, notably excessive amounts of low-density lipoprotein, are common in people with certain illnesses. They frequently have a higher rate of atherosclerosis. Low apo A-I levels are caused by several genetic diseases.

Raised apo B levels are linked to elevated LDL-C and non-HDL-C levels, and are linked to an increased risk of cardiovascular disease. Elevations may be caused by a high-fat diet and/or a reduction in LDL clearance from the blood.

A direct cause of abnormal apo B levels is some hereditary diseases. Familial combined hyperlipidemia, for example, is an inherited condition that causes excessive cholesterol and triglyceride levels in the blood. Apolipoprotein B deficiency, also known as Bassen-Kornzweig syndrome, is a relatively rare hereditary disorder that results in unusually low amounts of apo B.

A variety of underlying diseases and other factors might result in abnormal apo B levels.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: An AST blood test is a test that is used to screen for and diagnose liver disease.

Also Known As: Aspartate Aminotransferase Test, Serum Glutamic-Oxaloacetic Transaminase Test, SGOT Test Transaminase, Serum AST Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is an Aspartate Aminotransferase test ordered?

When someone undergoes a standard health examination, an AST test may be requested as part of a full metabolic panel.

When a person exhibits indications and symptoms of a liver problem, an AST test may be ordered along with numerous other tests.

Because many persons with minor liver damage have no signs or symptoms, AST may be ordered alone or in combination with other tests for people who are at an elevated risk for liver disease.

When AST is used to evaluate the effectiveness of treatment for people with liver disease, it may be ordered on a frequent basis during the course of treatment.

What does an Aspartate Aminotransferase blood test check for?

Aspartate aminotransferase is an enzyme found in cells all over the body, but especially in the heart and liver, as well as the kidneys and muscles to a lesser amount. AST levels in the blood are typically low in healthy people. AST is released into the bloodstream when liver or muscle cells are damaged. As a result, AST can be used to detect or monitor liver disease.

The liver is a critical organ found directly behind the rib cage in the upper right side of the abdomen. It is engaged in a variety of vital bodily functions. The liver aids in the digestion of nutrients, creates bile to aid in fat digestion, manufactures numerous vital proteins such as blood clotting factors, and breaks down potentially hazardous compounds into safe substances that the body may utilize or expel.

A variety of disorders can harm liver cells and cause AST levels to rise. The test is most effective in detecting liver damage caused by hepatitis, liver-toxic medications, cirrhosis, or alcoholism. AST, on the other hand, is not particular to the liver and can be elevated in diseases affecting other organs.

Alanine aminotransferase testing is frequently combined with an AST test. When the liver is injured, both of these enzymes become high in the bloodstream. A computed AST/ALT ratio can help distinguish between different types of liver injury and determine whether elevated levels are due to something else, such as a heart or muscle injury.

Lab tests often ordered with an Aspartate Aminotransferase test:

  • GGT
  • ALT
  • ALP
  • Bilirubin
  • Hepatic Function Panel
  • Comprehensive Metabolic Panel (CMP)
  • Albumin
  • Total Protein

Conditions where an Aspartate Aminotransferase test is recommended:

  • Liver Disease
  • Hepatitis
  • Jaundice
  • Alcoholism
  • Cirrhosis
  • Wilson Disease
  • Hemochromatosis

How does my health care provider use an Aspartate Aminotransferase test?

The aspartate aminotransferase blood test is commonly used to identify liver disease. It is frequently ordered in conjunction with alanine aminotransferase, another liver enzyme, or as part of a liver panel or comprehensive metabolic panel to screen for and/or diagnose liver problems.

Although ALT is more specific for the liver than AST and is more usually elevated than AST, both are regarded to be two of the most significant tests for detecting liver impairment. When AST is directly compared to ALT, an AST/ALT ratio is calculated. This ratio can be used to differentiate between different types of liver disease and hepatic harm from heart or muscle damage.

To assess which type of liver illness is present, AST levels are frequently compared to the results of other tests such as alkaline phosphatase, total protein, and bilirubin.

AST is frequently evaluated to monitor the treatment of people with liver disease, and it can be ordered alone or in combination with other tests.

AST is sometimes used to monitor persons who are receiving potentially hazardous drugs for the liver. If the person's AST levels rise, he or she may be moved to another medicine.

What do my AST test results mean?

Low AST levels in the blood are typical and anticipated.

Acute hepatitis and viral infections are the most common causes of very high AST values. AST values are normally elevated for 1-2 months after acute hepatitis, but they might take up to 3-6 months to recover to normal. AST levels can also be significantly high as a result of exposure to liver-toxic medications or other chemicals, as well as situations that produce reduced blood supply to the liver.

AST values are usually lower in chronic hepatitis, generally less than 4 times normal, and are more likely to be normal than ALT levels. With chronic hepatitis, AST levels typically fluctuate between normal and slightly elevated, so the test may be ordered repeatedly to detect the pattern. Other illnesses of the liver, particularly when the bile ducts are clogged, as well as cirrhosis and certain malignancies of the liver, can cause moderate increases. AST can also rise after a heart attack or a muscular damage, although to a far higher extent than ALT.

The AST test is frequently done in conjunction with the ALT test or as part of a liver panel. See the Liver Panel article for more information on AST values in relation to other liver tests.

The ALT level is usually greater than the AST level in most kinds of liver disease, and the AST/ALT ratio is low. There are a few exceptions: in alcoholic hepatitis, cirrhosis, hepatitis C virus-related chronic liver disease, and the first day or two of acute hepatitis or injury from bile duct obstruction, the AST/ALT ratio is frequently elevated. AST levels are generally substantially higher than ALT after cardiac or muscle injury, and they tend to stay higher than ALT for longer than they do after liver injury.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Most Popular
Measurement of the levels of bilirubin is used in the diagnosis and treatment of liver, hemolytic, hematologic, and metabolic disorders, including hepatitis and gall bladder obstruction. The assessment of direct bilirubin is helpful in the differentiation of hepatic disorders. The increase in total bilirubin associated with obstructive jaundice is primarily due to the direct (conjugated) fraction. Both direct and indirect bilirubin are increased in the serum with hepatitis.

Description: Bilirubin Fractionated is a blood test that is used to screen for or monitor liver disorders, hemolytic anemia, and neonatal jaundice.

Also Known As: Total Bilirubin Test, TBIL Test, Neonatal Bilirubin Test, Direct Bilirubin Test, Conjugated Bilirubin Test, Indirect Bilirubin Test, Unconjugated Bilirubin Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is a Bilirubin, Fractionated test ordered?

When someone shows evidence of abnormal liver function, a doctor will usually request a bilirubin test along with other laboratory tests. A bilirubin test may be ordered when a patient:

  • Evidence of jaundice is visible.
  • Has a history of excessive alcohol consumption
  • Has a possible drug toxicity
  • Has been exposed to viruses that cause hepatitis

Other signs and symptoms to look out for include:

  • Urine with a dark amber tint.
  • Nausea/vomiting
  • Swelling and/or pain in the abdomen
  • Fatigue and malaise which are common symptoms of chronic liver disease.

In babies with jaundice, measuring and monitoring bilirubin is considered routine medical therapy.

When someone is suspected of hemolytic anemia as a cause of anemia, bilirubin tests may be ordered. In this instance, it's frequently ordered in conjunction with other hemolysis-related tests such a complete blood count, reticulocyte count, haptoglobin, and LDH.

What does a Bilirubin, Fractionated blood test check for?

Bilirubin is an orange-yellow pigment that is largely formed as a byproduct of heme degradation. Heme is a component of hemoglobin, a red blood cell protein. Bilirubin is eventually digested by the liver, which allows it to be excreted from the body. This test assesses a person's liver function or aids in the diagnosis of anemias caused by RBC destruction by measuring the quantity of bilirubin in their blood.

After roughly 120 days in circulation, RBCs generally disintegrate. Heme is transformed to bilirubin as it is released from hemoglobin. Unconjugated bilirubin is another name for this type of bilirubin. Proteins transport unconjugated bilirubin to the liver, where sugars are linked to bilirubin to produce conjugated bilirubin. Conjugated bilirubin enters the bile and travels from the liver to the small intestines, where bacteria break it down further before it is excreted in the stool. As a result, bilirubin breakdown products give stool its distinctive brown hue.

A normal, healthy human produces a tiny quantity of bilirubin each day. The majority of bilirubin comes from damaged or degraded RBCs, with the rest coming from bone marrow or the liver. Small amounts of unconjugated bilirubin are normally discharged into the bloodstream, but there is almost no conjugated bilirubin. Laboratory tests can measure or estimate both types, and a total bilirubin result can be presented as well.

A person may appear jaundiced, with yellowing of the skin and/or whites of the eyes, if the bilirubin level in their blood rises. The pattern of bilirubin test results can provide information to the health care provider about the ailment that may be present. When there is an exceptional quantity of RBC destruction or when the liver is unable to handle bilirubin, unconjugated bilirubin levels may rise. Conversely, conjugated bilirubin levels can rise when the liver can process bilirubin but not transmit the conjugated bilirubin to the bile for elimination; this is most commonly caused by acute hepatitis or bile duct blockage.

In the first few days after birth, increased total and unconjugated bilirubin levels are fairly common in infants. This condition is known as "physiologic jaundice of the newborn," and it develops when the liver of a newborn is not yet mature enough to handle bilirubin. Physiologic jaundice in newborns usually goes away after a few days. RBCs may be damaged in newborn hemolytic illness due to blood incompatibility between the infant and the mother; in these circumstances, treatment may be necessary since large amounts of unconjugated bilirubin might harm the newborn's brain.

Increased total and conjugated bilirubin levels in infants can be caused by biliary atresia, an uncommon but life-threatening congenital disease. To avoid catastrophic liver damage that may necessitate liver transplantation during the first few years of life, this problem must be rapidly recognized and treated, usually with surgery. Despite early surgical therapy, some children may require liver transplants.

Lab tests often ordered with a Bilirubin, Fractionated test:

  • CMP
  • ALT
  • ALP
  • AST
  • Hepatitis A
  • Hepatitis B
  • Hepatitis C
  • Complete Blood Count (CBC)
  • Urinalysis
  • GGT
  • Reticulocyte Count

Conditions where a Bilirubin, Fractionated test is recommended:

  • Jaundice
  • Liver Disease
  • Hepatitis
  • Alcoholism
  • Hemolytic Anemia

Commonly Asked Questions:

How does my health care provider use a Bilirubin, Fractionated test?

A bilirubin test is used to detect an abnormally high quantity of the substance in the blood. It can be used to figure out what's causing your jaundice and/or diagnose illnesses like liver disease, hemolytic anemia, and bile duct blockage.

Bilirubin is an orange-yellow pigment that is largely formed as a byproduct of heme degradation. Heme is a component of hemoglobin, a red blood cell protein. Bilirubin is eventually digested by the liver, which allows it to be excreted from the body. An increased blood level can be caused by any disorder that speeds up the breakdown of RBCs or impairs the processing and elimination of bilirubin.

Laboratory testing can measure or estimate two types of bilirubin:

Unconjugated bilirubin—unconjugated bilirubin is formed when heme is released from hemoglobin. Proteins transport it to the liver. Small levels of the substance may be found in the blood.

Sugars are attached to bilirubin in the liver, resulting in conjugated bilirubin. It enters the bile and travels from the liver to the small intestines before being excreted in the feces. In normal circumstances, there is no conjugated bilirubin in the blood.

A chemical test is usually done to determine the total bilirubin level first. If the total bilirubin level rises, a second chemical test can be used to detect water-soluble forms of bilirubin, known as "direct" bilirubin. The amount of conjugated bilirubin present can be estimated using the direct bilirubin test. The "indirect" amount of unconjugated bilirubin can be estimated by subtracting the direct bilirubin level from the total bilirubin level. The pattern of bilirubin test results can provide information to the healthcare professional about the ailment that may be present.

Bilirubin is measured in adults and older children to:

  • Diagnose and/or monitor liver and bile duct disorders.
  • Evaluate patients with hemolytic anemia
  • Distinguish between the causes of jaundice in babies.

Only unconjugated bilirubin is raised in both physiologic jaundice and hemolytic illness of the infant.

Damage to the newborn's liver from neonatal hepatitis and biliary atresia will also raise conjugated bilirubin concentrations, which is generally the first indication that one of these less common disorders is present.

Because excessive unconjugated bilirubin harms growing brain cells, it is critical to detect and treat an increased amount of bilirubin in a newborn. Mental retardation, learning and developmental impairments, hearing loss, eye movement disorders, and mortality are all possible outcomes of this damage.

What do my bilirubin test results mean?

In adults and children, increased total bilirubin, primarily unconjugated bilirubin, could be caused by:

  • Hemolytic or pernicious anemia are two types of anemia.
  • Reaction to a transfusion
  • Cirrhosis
  • Gilbert syndrome

When conjugated bilirubin levels are higher than unconjugated bilirubin levels, there is usually a problem with bilirubin removal by the liver cells. This can be caused by a variety of factors, including:

  • Hepatitis caused by a virus
  • Reactions to drugs
  • Alcoholic hepatitis

When the bile ducts are blocked, conjugated bilirubin is raised more than unconjugated bilirubin. This can happen, for example, when:

  • In the bile ducts, there are gallstones.
  • Damaging of the bile ducts due to tumors

Increased bilirubin levels can also be caused by rare hereditary illnesses that involve aberrant bilirubin metabolism, such as Rotor, Dubin-Johnson, and Crigler-Najjar syndromes.

Low bilirubin levels are usually not a cause for worry and are not monitored.

A newborn's high bilirubin level may be transient and diminish within a few days to two weeks. However, if the bilirubin level exceeds a crucial threshold or rises rapidly, the cause must be investigated so that appropriate treatment can be started. Increased bilirubin levels can be caused by the rapid breakdown of red blood cells as a result of:

  • Incompatibility of the mother's blood type with that of her child
  • Infections that are present at birth
  • oxygen deficiency
  • Liver disease

Only unconjugated bilirubin is elevated in most of these disorders. In the rare disorders of biliary atresia and newborn hepatitis, increased conjugated bilirubin is found. To avoid liver damage, biliary atresia necessitates surgical surgery.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Measurement of the levels of bilirubin is used in the diagnosis and treatment of liver, hemolytic, hematologic, and metabolic disorders, including hepatitis and gallbladder obstructive disease.

Description: A BUN/Creatinine ratio test is a blood test that measures levels of Urea Nitrogen and Creatinine in your blood and is useful in the diagnosis of renal disease.

Also Known As: Urea Nitrogen and Creatinine Ratio test, BUN test, Urea test, Urea Nitrogen test, Creat test, Blood Creatinine Test, Serum Creatinine Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is a BUN Creatinine Ratio test ordered?

BUN is a component of the BMP and CMP, two categories of widely-used tests:

  • as part of a regular health examination
  • prior to beginning the use of specific pharmacological therapy, determine how well the kidneys are functioning.
  • When a patient who is critically ill visits the emergency room or is admitted to the hospital

When kidney problems are suspected during a hospital stay, BUN is frequently ordered along with creatinine or a renal panel. Kidney dysfunction can show several indications and symptoms, such as:

  • fatigue, inability to focus, poor appetite, or difficulty sleeping
  • Swelling or puffiness, especially in the face, wrists, abdomen, thighs, or ankles or around the eyes
  • Foamy, bloody, or coffee-colored urine
  • a reduction in the urine's volume
  • problems urinating, such as a burning sensation or an unusual discharge, or a change in frequency, particularly at night
  • discomfort in the middle of the back, below the ribs, and next to the kidneys
  • elevated blood pressure

BUN may also be required for:

  • Patients with long-term illnesses or conditions like diabetes, congestive heart failure, and myocardial infarction should have regular kidney function checks.
  • monitoring renal function and treatment at frequent intervals in individuals with known kidney disease
  • Monitoring kidney function both before and after taking specific medications
  • When a CT scan is anticipated, furthermore to a creatinine
  • periodically to check on the efficiency of the dialysis

During a health examination, a routine metabolic panel that includes creatinine may be ordered. It might be prescribed if a patient is critically ill or if a doctor has reason to believe that their kidneys aren't functioning properly. Kidney dysfunction can show several indications and symptoms, such as:

  • fatigue, inability to focus, poor appetite, or difficulty sleeping
  • Swelling or puffiness, especially in the face, wrists, abdomen, thighs, or ankles, or around the eyes
  • Foamy, bloody, or coffee-colored urine
  • a reduction in the urine's volume
  • problems urinating, such as a burning sensation or an unusual discharge, or a change in frequency, particularly at night
  • discomfort in the middle of the back, below the ribs, and next to the kidneys
  • elevated blood pressure

When a person has a known kidney ailment or a condition that could impair kidney function, a creatinine blood test may be prescribed along with a BUN test, urine albumin, and other tests on a regular basis. When a CT scan is anticipated, before and throughout some medication regimens, as well as before and after dialysis, both BUN and creatinine may be requested to check the efficacy of treatments.

What does a BUN Creatinine Ratio test check for?

When protein is broken down into its constituent parts in the liver, urea is produced as a waste product. Ammonia is created during this process, and it is later changed into the less harmful waste product urea. This examination counts the urea nitrogen levels in the blood.

Ammonia and urea both contain nitrogen as an ingredient. Because urea contains nitrogen and because the body excretes excess nitrogen via urea/urea nitrogen, the terms urea and urea nitrogen are sometimes used interchangeably. The liver releases urea into the blood, which travels to the kidneys where it is removed from the circulation and discharged as urine. Since this is a continuous process, urea nitrogen levels in the blood are typically low and steady.

The majority of illnesses or ailments that affect the liver or kidneys have the potential to have an impact on the blood's urea content. Urea concentrations in the blood will increase if the liver produces more urea or if the kidneys are not functioning properly and are having trouble removing wastes from the blood. BUN values may decrease if severe liver illness or injury prevents the synthesis of urea.

Muscles release creatinine as a waste product after breaking down a substance called creatine. The kidneys eliminate creatinine from the body by filtering nearly all of it from the blood and releasing it into the urine. The creatinine level in the blood and/or urine is determined by this test.

The process that creates the energy required to contract muscles includes creatine. The body produces both creatine and creatinine at a fairly steady rate. Blood levels are typically a good indication of how well the kidneys are functioning since the kidneys filter almost all of the creatinine from the blood and release it into the urine. The amount created is influenced by a person's size and muscular mass. As a result, men's creatinine levels will be a little bit greater than those of women and children.

Calculations that are used to assess kidney function can be done using data from a blood creatinine test in conjunction with data from other tests, including a 24-hour urine creatinine test.

Lab tests often ordered with a BUN Creatinine Ratio test:

  • Urine Protein
  • eGFR
  • Creatinine Clearance
  • Comprehensive Metabolic Panel
  • Basic Metabolic Panel
  • Cystatin C
  • Renal Panel
  • Urinalysis
  • Microalbumin
  • Beta-2 Microglobin

Conditions where a BUN Creatinine Ratio test is recommended:

  • Kidney Disease
  • Diabetes
  • Hypertension
  • Proteinuria

How does my health care provider use a BUN Creatinine Ratio test?

The creatinine test and blood urea nitrogen tests are primarily used to assess kidney function under various conditions, aid in the diagnosis of kidney illness, and keep track of persons who have either acute or chronic renal failure or dysfunction. When requested as a component of a renal panel, basic metabolic panel, or comprehensive metabolic panel, it may also be used to assess a person's overall health state.

When protein is digested in the liver, urea is produced as a waste product. The liver releases urea into the blood, which travels to the kidneys where it is removed from the circulation and discharged as urine. Since this is a continuous process, urea nitrogen levels in the blood are typically low and steady. However, the level of urea in the blood will increase if the kidneys become diseased or damaged and are unable to remove waste products from the blood.

The kidneys are a pair of bean-shaped organs that are situated on the right and left sides of the back at the base of the ribcage. They include around a million nephrons, which are very small blood filtering organs. Blood is continuously filtered via a glomerulus, a tiny collection of looping blood arteries, in each nephron. Water and tiny molecules can pass through the glomerulus, while blood cells and bigger molecules are retained. Each glomerulus has a little tube attached to it that gathers the fluid and molecules that flow through it and reabsorbs what the body can use. Urine is created by the leftover waste.

Creatinine and BUN tests may be performed to monitor for renal dysfunction and the efficacy of treatment if the results are abnormal or if a person has an underlying condition known to impact the kidneys, such as diabetes or high blood pressure. Before some procedures, such a CT scan, that can call for the use of medications that can harm the kidneys, such as creatinine and BUN tests in the blood may also be prescribed to assess renal function.

What do my BUN Creatinine Ratio test results mean?

BUN levels that are higher indicate poor renal health. This could be brought on by failure, injury, or acute or chronic renal disease. A condition that reduces blood flow to the kidneys, such as congestive heart failure, shock, stress, a recent heart attack, or serious burns, as well as conditions that impede urine flow or dehydration, may also be to blame.

When there is excessive protein breakdown, a considerable rise in the amount of protein in the diet, or gastrointestinal bleeding, BUN values may be increased.

Low BUN levels are rare and typically not reason for alarm. The BUN test is not typically used to diagnose or monitor these disorders, but they may appear in severe liver illness, malnutrition, and occasionally when a person is overhydrated.

BUN values may be normal even in the presence of substantial malfunction in the other kidney if one kidney is fully functional.

Blood creatinine levels that are higher than normal point to renal disease or other disorders that have an impact on kidney function. These may consist of:

For instance, infections or autoimmune illnesses can cause kidney blood vessels to enlarge or become damaged.

  • infection of the kidneys with bacteria
  • death of kidney cells brought on by chemicals or medications, for instance, in the tiny tubes of the kidneys
  • Urinary tract obstruction can be brought on by prostate disease, kidney stones, or other conditions.
  • reduced renal blood flow brought on by shock, dehydration, congestive heart failure, atherosclerosis, or diabetes-related problems

Although they are uncommon, low blood creatinine levels are often not a cause for alarm. They can be observed in diseases that cause a loss of muscular mass.

As part of a creatinine clearance test, 24-hour urine creatinine levels are compared to blood levels.

There are no established reference ranges for single, random urine creatinine values. They are typically used in conjunction with other exams to compare levels of other chemicals detected in urine. The urine albumin test, the urine albumin/creatinine ratio, and the urine protein test are a few examples.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Most Popular

Description: A C-peptide test is a test that will measure the amount of C-peptide, a short amino acid chain, in the blood. This test can be used to determine if the beta cells in the pancreas are producing enough insulin. It can also be used to evaluate the reason for low blood glucose.

Also Known As: Insulin C-Peptide Test, Connecting Peptide Insulin Test, Proinsulin C-peptide test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: Fasting is required.

When is a C-Peptide test ordered?

When a person is initially diagnosed with type 1 diabetes, C-peptide levels may be ordered as part of a "residual beta cell function" study.

When a person has type 2 diabetes, a health practitioner may request the test on a regular basis to track the state of their beta cells and insulin production over time and assess whether or not insulin injections are needed.

When there is reported acute or recurring low blood glucose and/or excess insulin is suspected, C-peptide levels can be measured.

A C-peptide test may be conducted on a regular basis after a person has been diagnosed with an insulinoma to assess treatment effectiveness and detect tumor recurrence.

When a person's pancreas has been removed or has had pancreas islet cell transplants, C-peptide levels may be tracked over time.

What does a C-Peptide blood test check for?

C-peptide is a chemical made up of a short chain of amino acids that is released into the bloodstream as a byproduct of the pancreas producing insulin. This test determines how much C-peptide is present in a blood or urine sample.

Proinsulin, a physiologically inactive molecule, splits apart in the pancreas, within specialized cells called beta cells, to generate one molecule of C-peptide and one molecule of insulin. Insulin is necessary on a regular basis for the transport of glucose into the body's cells. When insulin is needed and released into the bloodstream in reaction to elevated glucose levels, equal amounts of C-peptide are also released. C-peptide can be used as a measure of insulin production because it is produced at the same rate as insulin.

C-peptide testing, in instance, can be used to assess the body's insulin production and distinguish it from insulin that is not produced by the body but is given as diabetes medication and hence does not generate C-peptide. This test can be done in conjunction with a blood test for insulin.

Lab tests often ordered with a C-Peptide test:

  • Insulin
  • Glucose

Conditions where a C-Peptide test is recommended:

  • Diabetes
  • Kidney Disease
  • Liver Disease
  • Insulin Resistance
  • Metabolic Syndrome

How does my health care provider use a C-Peptide test?

C-peptide testing can be used for a variety of reasons. When proinsulin breaks into one molecule of C-peptide and one molecule of insulin, C-peptide is created by the beta cells in the pancreas. Insulin is a hormone that allows the body to use glucose as its primary energy source. C-peptide is a helpful measure of insulin production since it is produced at the same rate as insulin.

A C-peptide test is not used to diagnose diabetes; however, when a person is newly diagnosed with diabetes, it may be ordered alone or in conjunction with an insulin level to evaluate how much insulin the pancreas is currently making.

The body becomes resistant to the effects of insulin in type 2 diabetes, so it compensates by manufacturing and releasing more insulin, which can destroy beta cells. Oral medications are commonly used to help type 2 diabetics stimulate their bodies to produce more insulin and/or make their cells more receptive to the insulin that is already produced. Type 2 diabetics may eventually produce very little insulin as a result of beta cell loss, necessitating insulin injections. Because any insulin produced by the body is reflected in the C-peptide level, the C-peptide test can be used to track beta cell activity and capability over time and to assist a health care provider in deciding when to start insulin treatment.

Antibodies to insulin can develop in people on insulin therapy, independent of the source of the insulin. These often interfere with insulin assays, making it difficult to assess endogenous insulin production directly. C-peptide measurement is a good alternative to insulin testing in certain situations.

C-peptide levels can also be utilized in conjunction with insulin and glucose levels to help determine the source of hypoglycemia and track its therapy. Excessive insulin supplementation, alcohol intake, hereditary liver enzyme deficits, liver or kidney illness, or insulinomas can all cause hypoglycemia symptoms.

Insulinomas can be diagnosed with the C-peptide test. These are tumors of the pancreas' islet cells, which can produce excessive levels of insulin and C-peptide, resulting in abrupt hypoglycemia. C-peptide testing can be used to track how well insulinoma treatment is working and to detect recurrence.

A C-peptide test may be performed to help evaluate a person who has been diagnosed with metabolic syndrome, a group of risk factors that includes abdominal obesity, high blood pressure, and elevated blood glucose and/or insulin resistance.

C-peptide levels are occasionally used to verify the effectiveness of treatment and the procedure's sustained success after someone has had his pancreatic removed or has had pancreas islet cell transplants to restore the ability to manufacture insulin.

What do my C-Peptide test results mean?

A high level of C-peptide implies that endogenous insulin synthesis is high. This could be a result of a high blood glucose level brought on by carbohydrate consumption and/or insulin resistance. Insulinomas, low blood potassium, Cushing syndrome, and renal failure are all linked to a high level of C-peptide.

C-peptide levels that are decreasing in someone with an insulinoma suggest a response to treatment when used for monitoring; levels that are increasing may indicate a tumor recurrence when used for monitoring.

A low amount of C-peptide is linked to a reduction in insulin synthesis. This can happen when the beta cells generate insufficient insulin, as in diabetes, or when their production is reduced by exogenous insulin administration.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: The CRP test is used to identify and/or monitor inflammation in patients.

Also Known As: CRP Test, Inflammation test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is a C-Reactive Protein test ordered?

When a person's medical history and signs and symptoms indicate that they may have a significant bacterial infection, a CRP test may be recommended. When a newborn displays signs of infection or when a person has sepsis symptoms including fever, chills, and rapid breathing and heart rate, it may be ordered.

It's also commonly requested on a regular basis to check illnesses like rheumatoid arthritis and lupus, and it's routinely repeated to see if medication is working. This is especially effective for inflammation issues because CRP levels decrease as inflammation decreases.

What does a C-Reactive Protein blood test check for?

C-reactive protein is a protein produced by the liver and released into the bloodstream within a few hours following tissue injury, infection, or other inflammatory event. After trauma or a heart attack, with active or uncontrolled autoimmune illnesses, and with acute bacterial infections like sepsis, markedly higher levels are reported. CRP levels can rise by a thousand-fold in response to inflammatory diseases, and their elevation in the blood can occur before pain, fever, or other clinical signs. The test detects inflammation caused by acute situations or monitors disease activity in chronic diseases by measuring the level of CRP in the blood.

The CRP test is not a diagnostic tool, although it can tell a doctor if inflammation is occurring. This information can be combined with other indicators like signs and symptoms, a physical exam, and other tests to establish whether someone has an acute inflammatory disorder or is having a flare-up of a chronic inflammatory disease. The health care provider may next do additional tests and treatment.

This CRP test should not be confused with the hs-CRP test. These are two separate CRP tests, each of which measures a different range of CRP levels in the blood for different purposes.

Lab tests often ordered with a C-Reactive Protein test:

  • Sed Rate (ESR)
  • Procalcitonin
  • ANA
  • Rheumatoid Factor
  • Complement

Conditions where a C-Reactive Protein test is recommended:

  • Arthritis
  • Autoimmune Disorders
  • Pelvic Inflammatory Disease
  • Inflammatory Bowel Disease
  • Sepsis
  • Vasculitis
  • Systemic Lupus Erythematosus
  • Meningitis and Encephalitis

Commonly Asked Questions:

How does my health care provider use a C-Reactive Protein test?

A health practitioner uses the C-reactive protein test to diagnose inflammation. CRP is an acute phase reactant, a protein produced by the liver and released into the bloodstream within a few hours following tissue injury, infection, or other inflammatory event. The CRP test is not a diagnostic test for any ailment, but it can be used in conjunction with other tests to determine whether a person has an acute or chronic inflammatory disorder.

CRP, for example, can be used to detect or track substantial inflammation in someone who is suspected of having an acute ailment like:

  • Sepsis is a dangerous bacterial infection.
  • An infection caused by a fungus
  • Inflammation of the pelvis

People with chronic inflammatory diseases can use the CRP test to detect flare-ups and/or see if their medication is working. Here are a few examples:

  • Inflammatory bowel disease
  • Arthritis, which can take many forms.
  • Autoimmune disorders, examples include lupus and vasculitis

CRP is occasionally requested in conjunction with an erythrocyte sedimentation rate, another inflammatory test. While the CRP test is not specific enough to diagnose an illness, it does serve as a broad marker for infection and inflammation, alerting doctors to the need for more testing and treatment. A variety of additional tests may be used to determine the source of inflammation, depending on the probable cause.

What do my C-Reactive Protein test results mean?

CRP levels in the blood are usually low.

CRP levels in the blood that are high or rising indicate the existence of inflammation, but they don't tell you where it is or what's causing it. A high CRP level can establish the presence of a severe bacterial infection in people who are suspected of having one. High levels of CRP in persons with chronic inflammatory disorders indicate a flare-up or that treatment isn't working.

When the CRP level rises and then falls, it indicates that the inflammation or infection is diminishing and/or responding to treatment.

Is there anything else I should know about C-Reactive Protein?

CRP levels can rise during pregnancy, as well as with the use of birth control tablets or hormone replacement therapy. Obese people have also been found to have higher CRP levels.

In the presence of inflammation, the erythrocyte sedimentation rate test will also rise; however, CRP rises first and then falls faster than the ESR.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: A hs-CRP or High Sensitivity C-Reactive Protein test is a blood test used to accurately detect lower concentrations of the protein C-Reactive Protein. This test is used to evaluate your risk of cardiovascular and heart disease and to check for inflammation and many other issues.

Also Known As: hsCRP Test, Cardiac CRP Test, high sensitivity C-reactive protein Test, CRP Test for heart disease.

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is a hs-CRP test ordered?

There is currently no consensus on when to get an hs-CRP test. It may be beneficial for treatment purposes to order hs-CRP for those that have kidney disease, diabetes or inflammatory disorders.

It's possible that hs-CRP will be tested again to confirm that a person has persistently low levels of inflammation.

What does a hs-CRP blood test check for?

C-reactive protein is a protein found in the blood that rises in response to infection and inflammation, as well as after trauma, surgery, or a heart attack. As a result, it's one of numerous proteins referred to as acute phase reactants. The high-sensitivity CRP test detects low levels of inflammation in the blood, which are linked to an increased risk of developing cardiovascular disease.

According to the American Heart Association, CVD kills more people in the United States each year than any other cause. A number of risk factors have been related to the development of CVD, including family history, high cholesterol, high blood pressure, being overweight or diabetic, however a considerable number of people with few or no recognized risk factors will also acquire CVD. This has prompted researchers to investigate for new risk variables that could be causing CVD or could be used to identify lifestyle modifications and/or treatments that could lower a person's risk.

High-sensitivity CRP is one of an increasing number of cardiac risk markers that may be used to assess an individual's risk. According to certain research, monitoring CRP with a highly sensitive assay can assist identify the risk level for CVD in persons who appear to be healthy. CRP levels at the higher end of the reference range can be measured with this more sensitive test. Even when cholesterol levels are within an acceptable range, these normal but slightly elevated levels of CRP in otherwise healthy persons might indicate the future risk of a heart attack, sudden cardiac death, stroke, and peripheral artery disease.

Lab tests often ordered with a hs-CRP test:

  • Complete Blood Count
  • Lipid Panel
  • Comprehensive Metabolic Panel
  • Lp-Pla2
  • Glucose

Conditions where a hs-CRP test is recommended:

  • Heart Attack
  • Heart Disease
  • Cardiovascular Disease
  • Stroke

How does my health care provider use a hs-CRP test?

A test for high-sensitivity C-reactive protein can be used to assess a person's risk of cardiovascular disease. It can be used in conjunction with a lipid profile or other cardiac risk markers, such as the lipoprotein-associated phospholipase A2 test, to provide further information regarding the risk of heart disease.

CRP is a protein that rises in the bloodstream as a result of inflammation. A continuous low level of inflammation, according to studies, plays a crucial role in atherosclerosis, the narrowing of blood vessels caused by the build-up of cholesterol and other lipids, which is typically linked to CVD. The hs-CRP test successfully detects low levels of C-reactive protein, indicating low but chronic inflammation, and so aids in predicting a person's risk of developing CVD.

Some specialists believe that high-sensitivity CRP is a good test for assessing CVD, heart attacks, and stroke risk, and that it can help in the evaluation process before a person gets one of these health problems. Some experts believe that combining a good marker for inflammation, such as hs-CRP, with a lipid profile is the best way to predict risk. This test has been recommended by several organizations for persons who are at a moderate risk of having a heart attack in the following ten years.

What does my hs-CRP test result mean?

Even when cholesterol levels are within an acceptable range, high levels of hs-CRP in otherwise healthy people have been found to predict an elevated risk of future heart attacks, strokes, sudden cardiac death, and/or peripheral arterial disease.

Higher hs-CRP concentrations indicate a higher risk of cardiovascular disease, while lower values indicate a lower risk. Individuals with hs-CRP values at the high end of the normal range are 1.5 to 4 times more likely than those with low levels of hs-CRP to have a heart attack.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Most Popular

Description: A Calcium test is a blood test that is used to screen for, diagnose, and monitor a wide range of medical conditions.

Also Known As: Ca Test, Serum Calcium Test, Calcium Blood Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is a Calcium test ordered?

A blood calcium test is frequently requested during a general medical evaluation. It's usually part of the comprehensive metabolic panel or the basic metabolic panel, two sets of tests that can be done during an initial evaluation or as part of a routine medical checks.

Many people do not experience symptoms of high or low calcium until their levels are dangerously high or low.

When a person has certain types of cancer, kidney illness, or has had a kidney transplant, calcium monitoring may be required. When someone is being treated for abnormal calcium levels, monitoring may be required to determine the effectiveness of medications such as calcium or vitamin D supplements.

What does a Calcium blood test check for?

Calcium is one of the most plentiful and vital minerals in the human body. It is required for cell signaling as well as the proper operation of muscles, nerves, and the heart. Calcium is essential for blood clotting as well as bone growth, density, and maintenance. This test determines how much calcium is present in the blood.

Calcium is found complexed in the bones for 99 percent of the time, while the remaining 1% circulates in the blood. Calcium levels are closely monitored; if too little is absorbed or consumed, or if too much is lost through the kidney or stomach, calcium is removed from bone to keep blood concentrations stable. Approximately half of the calcium in the blood is metabolically active and "free." The other half is "bound" to albumin, with a minor proportion complexed to anions like phosphate, and both of these forms are metabolically inactive.

Blood calcium can be measured using two different tests. The free and bound forms of calcium are measured in the total calcium test. Only the free, physiologically active form of calcium is measured in the ionized calcium test.

Lab tests often ordered with a Calcium test:

  • Phosphorus
  • Vitamin D
  • Magnesium
  • PTH
  • Albumin
  • Basic Metabolic Panel (BMP)
  • Comprehensive Metabolic Panel (CMP)

Conditions where a Calcium test is recommended:

  • Kidney Disease
  • Thyroid Disease
  • Alcoholism
  • Malnutrition
  • Parathyroid Diseases
  • Breast Cancer
  • Multiple Myeloma

How does my health care provider use a Calcium test?

A blood calcium test is used to screen for, diagnose, and monitor a variety of bone, heart, nerve, kidney, and tooth disorders. If a person has signs of a parathyroid disease, malabsorption, or an overactive thyroid, the test may be ordered.

A total calcium level is frequently checked as part of a standard health check. It's part of the comprehensive metabolic panel and the basic metabolic panel, which are both collections of tests used to diagnose or monitor a range of ailments.

When a total calcium result is abnormal, it is interpreted as a sign of an underlying disease. Additional tests to assess ionized calcium, urine calcium, phosphorus, magnesium, vitamin D, parathyroid hormone, and PTH-related peptide are frequently performed to assist determine the underlying problem. PTH and vitamin D are in charge of keeping calcium levels in the blood within a narrow range of values.

Measuring calcium and PTH combined can assist identify whether the parathyroid glands are functioning normally if the calcium is abnormal. Testing for vitamin D, phosphorus, and/or magnesium can assist evaluate whether the kidneys are excreting the right amount of calcium, and measuring urine calcium can help detect whether additional deficits or excesses exist. The balance of these many compounds is frequently just as critical as their concentrations.

The total calcium test is the most common test used to determine calcium status. Because the balance between free and bound calcium is usually constant and predictable, it is a reliable reflection of the quantity of free calcium present in the blood in most cases. However, the balance between bound and free calcium is altered in some persons, and total calcium is not a good indicator of calcium status. Ionized calcium measurement may be required in certain cases. Critically sick patients, those receiving blood transfusions or intravenous fluids, patients undergoing major surgery, and persons with blood protein disorders such low albumin are all candidates for ionized calcium testing.

What do my Calcium test results mean?

The amount of calcium circulating in the blood is not the same as the amount of calcium in the bones.

A feedback loop including PTH and vitamin D regulates and stabilizes calcium uptake, utilization, and excretion. Conditions and disorders that disturb calcium control can induce abnormal acute or chronic calcium elevations or declines, resulting in hypercalcemia or hypocalcemia symptoms.

Total calcium is usually tested instead of ionized calcium since it is easier to do and requires no additional treatment of the blood sample. Because the free and bound forms of calcium make up about half of the total, total calcium is usually a decent depiction of free calcium. Because nearly half of the calcium in blood is bonded to protein, high or low protein levels might alter total calcium test findings. In these circumstances, an ionized calcium test is more appropriate for measuring free calcium.

A normal total or ionized calcium test, when combined with other normal laboratory findings, indicates that a person's calcium metabolism is normal and blood levels are properly managed.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Clinical Significance
Micronutrient, Calcium - Serum calcium is involved in the regulation of neuromuscular and enzyme activity, bone metabolism and blood coagulation. Calcium blood levels are controlled by a complex interaction of parathyroid hormone, vitamin D, calcitonin and adrenal cortical steroids. Calcium measurements are useful in the diagnosis of parathyroid disease, some bone disorders and chronic renal disease. A low level of calcium may result in tetany.

Patients must be 18 years of age or greater.

Reference Range(s) (mg/dL)
                        Male                  Female
18-19 years     8.9-10.4    8.9-10.4
20-49 years     8.6-10.3    8.6-10.2
>49 years        8.6-10.3    8.6-10.4
Reference range not available for individuals <18 years for this micronutrient test.


Clinical Significance
Micronutrients, Heavy Metals Panel, Blood

Patients must be 18 years of age or greater.

Includes

  • Micronutrient, Arsenic, Blood
  • Micronutrient, Cadmium, Blood
  • Micronutrient, Cobalt, Blood
  • Micronutrient, Lead, Blood
  • Micronutrient, Mercury, Blood

Measurements are used in the diagnosis and treatment of numerous potentially serious disorders associated with changes in body acid-base balance.

Description: Ion Mobility Lipoprotein Fractionation is a test that uses a gas-phase technology to separate the lipid particles by size. As each particle is separated, they are counted.

Also Known As: LDL Particle Testing, LDL-P Test, LDL Subclass Test, sdLDL Test, LDL Fractionations Test, LDL Particle Size Test, LDL Particle Number Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: Fasting preferred, but not required

When is a Lipoprotein Fractionation test ordered?

When someone has a personal or family history of early cardiovascular disease, this testing may be ordered as part of an overall evaluation of cardiac risk, especially if the person does not have typical cardiac risk factors like high cholesterol, high LDL cholesterol, high triglyceride, low HDL cholesterol, smoking, obesity, inactivity, diabetes, and/or hypertension.

When a person with elevated LDL-P and/or a high proportion of tiny, dense LDL particles has undertaken cholesterol-lowering treatment or lifestyle adjustments, the healthcare practitioner may conduct LDL lipoprotein subfraction testing, as well as other lipid tests, to assess treatment success.

Although LDL-P is not typically suggested as a screening test, some healthcare practitioners are using it in conjunction with a battery of other cardiac risk tests to evaluate a person's overall risk of getting CVD.

What does a Lipoprotein Fractionation blood test check for?

Low-density lipoproteins are lipid-transporting particles that travel throughout the body. Protein, cholesterol, triglyceride, and phospholipid molecules are all present in each particle. As they move through the bloodstream, their makeup changes. Lipoprotein particles range in size from large and fluffy to small and dense, depending on which molecules are eliminated and which are added. The relative amounts of particles with different characteristics in the blood are determined by LDL particle testing. Subfractionation testing is a term used to describe this process.

Traditional lipid testing determines the amount of LDL cholesterol in the blood but does not assess the number of LDL particles. Increased numbers of small, dense LDL particles have been linked to inflammation and are more likely to produce atherosclerosis than fewer light, fluffy LDL particles, according to some research. Researchers believe that the existence of an elevated quantity of sdLDL could be one of the reasons why some people have heart attacks while having relatively low total and LDL cholesterol levels.

The number of sdLDL particles in a person's blood is determined in part by genetics, in part by sex, and in part by lifestyle and overall health. Increased levels of sdLDL are linked to certain diseases and disorders, like as diabetes and hypertension.

By examining a person's triglyceride and high-density lipoprotein cholesterol levels, it is usually able to estimate whether they have a high amount of sdLDL particles. Typically, these tests are done as part of a lipid profile. People with high triglycerides and low HDL-C have higher levels of sdLDL. More sdLDL is connected with a triglyceride level greater than 120 mg/dL and an HDL-C level less than 40 mg/dL in men and less than 50 mg/dL in women.

Other lipoprotein particles, such as HDL and VLDL, can also be subfractionated, however these tests are generally utilized in research settings and are not discussed on this page.

Lab tests often ordered with a Lipoprotein Fractionation test:

  • Lipid Panel
  • HDL Cholesterol
  • LDL Cholesterol
  • Direct LDL
  • Apolipoprotein A-1
  • Apolipoprotein B
  • Lipoprotein (a)
  • Triglycerides
  • Homocysteine
  • Hs-CRP
  • VAP

Conditions where a Lipoprotein Fractionation test is recommended:

  • Cardiovascular Disease
  • Heart Disease

How does my health care provider use a Lipoprotein Fractionation test?

Low-density lipoprotein particle testing determines the number, size, density, and/or electrical charge of LDL particles. It may be useful in determining cardiac risk in patients with a personal or family history of heart disease at a young age, particularly if their total cholesterol and LDL cholesterol levels are not markedly increased. LDL subfraction testing is usually done in conjunction with or after a lipid profile.

While the LDL-C test is a good predictor of cardiovascular disease risk for many people, research has indicated that certain persons with healthy LDL-C levels nonetheless have an increased risk of CVD. Similarly, even if their LDL-C is at a safe level, people with chronic diseases like diabetes may be at higher risk. The quantity of LDL particles and/or their size has been recommended as an additional factor to consider when assessing CVD risk in these populations. Lipoprotein subfraction testing may be done in these situations to further assess a person's CVD risk.

LDL-P is sometimes requested to see how well a treatment is working at reducing the quantity of tiny, dense LDL particles.

LDL subfraction testing has been employed in clinical settings, although VLDL or HDL subfraction testing is primarily used in research. This is because LDL cholesterol has been established as the key risk factor for heart disease, and LDL assessment has received increased attention in research and development.

What do my Lipoprotein Fractionation test results mean?

The method and reporting format utilized in an LDL-P test, as well as the person's total cholesterol, LDL-C, VLDL, and/or HDL cholesterol, are all reflected in the results. Because different methods divide subclasses based on different physical qualities, results may not be immediately comparable from one method to the next or from one laboratory to the next.

Usually, the result is evaluated in context of a lipid profile and the risk it implies:

  • If a person has a high number of mostly tiny, dense LDL and an elevated LDL-P, this result will enhance the person's risk of cardiovascular disease beyond the risk associated with total LDL.
  • If a person only has large, fluffy LDL and a low LDL-P, this discovery will not put them at any greater risk.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Catecholamines, Fractionated and VMA, 24-Hour Urine without Creatinine

Catecholamines are a group of similar substances released into the blood in response to physical or emotional stress. The primary catecholamines are dopamine, epinephrine (adrenaline), and norepinephrine. Catecholamine testing measures the amounts of these hormones in the urine and/or blood. Urine testing is recommended over blood testing.

Patient Preparation

It is preferable for the patient to be off medications for three days prior to collection. However, common antihypertensives (diuretics, ACE inhibitors, calcium channel blockers, alpha and beta blockers) may cause minimal or no interference.
Patient should avoid tobacco, tea, coffee, and strenuous exercise for 8-12 hours prior to collection.



Serum chloride is the major extracellular anion and counter-balances the major cation, sodium, maintaining electrical neutrality of the body fluids. Two thirds of the total anion concentration in extracellular fluids is chloride and it is significantly involved in maintaining proper hydration and osmotic pressure. Movement of chloride ions across the red blood cell membrane is essential for the transport of biocarbonate ions in response to changing concentrations of carbon dioxide. Chloride measurements are used in the diagnosis and treatment of electrolyte and metabolic disorders such as cystic fibrosis and diabetic acidosis.


5 Benefits of Metabolic Syndrome Tests

One-third of adults in the United States suffer from metabolic syndrome. A sedentary lifestyle and poor diet both contribute to this health condition.

metabolic syndrome test is a simple way to check your health. Blood pressure, blood glucose levels, and other body systems need to stay on track to ensure the body is functioning properly.

What is Metabolic Syndrome?

Metabolic Syndrome is not a disease; it is the combination of multiple health issues. High blood sugar, high cholesterol, high triglyceride levels, fatty midsection, and high blood pressure all contribute to this medical condition.

A metabolic syndrome diagnosis comes when a patient suffers from at least three of these issues. These issues can lead to larger, more serious health issues.

Causes of Metabolic Syndrome

Although a combination of factors cause Metabolic Syndrome, according to the Mayo Clinic, the biggest contributors are obesity, inactivity, and insulin resistance.

Age, being of Hispanic origin, and diabetes will increase the chances of developing metabolic syndrome.

Signs and Symptoms of Metabolic Syndrome

Because there are so many factors that play into the diagnosis of Metabolic Syndrome, it is important to pay attention to small symptoms.

Blood Sugar

High blood sugar, also known as hyperglycemia, can cause Type 2 Diabetes. A healthy blood sugar level for adults who do not suffer from Type 1 or Type 2 diabetes is 90 - 110 mg/dL.

High blood sugar can come from illness and stress, but most often, it is the result of over-eating. A person with high blood sugar levels can experience exhaustion, extreme thirst, poor eyesight, and frequent urination.

Continual high blood sugar levels can lead to heart disease and damage to the nerves, kidneys, blood vessels, eyes, feet, and mouth.

Managing high blood sugar can be easy with a healthy diet, portion control, and daily exercise.

Cholesterol

There are both good and bad types of Cholesterol. While good cholesterol helps the body's cell system, bad cholesterol will override any work done.

Bad cholesterol causes arteries to clog and increases the chance of blood clots. This can lead to heart attacks, stroke, and heart disease.

While high cholesterol can sometimes be genetic, oftentimes, it is the result of an unhealthy lifestyle. There are no symptoms of high cholesterol, so blood tests must be taken to detect it.

Triglyceride Levels

Triglycerides are fatty deposits in the blood used for energy. Sometimes referred to as "lipids," triglycerides are derived from foods like carbohydrates.

The target level for triglycerides is less than 150 mg per deciliter. Higher levels increase the risk of heart disease. 

Like cholesterol, there are no symptoms for high triglycerides. Levels can be checked with a blood test after a fast.

Healthy eating and daily movement are both important steps to take to maintain healthy triglyceride levels.

Blood Pressure

Blood pressure is the rate at which blood flows through the blood vessels. If the pressure is too high, this can cause high blood pressure or hypertension.

Blood pressure is measured by looking at the systolic number, on the top, compared to the diastolic number, on the bottom. Healthy blood pressure is 120/80 or slightly below.

The higher the numbers, the greater the risk for stroke, vision loss, heart attack, or heart failure.

High blood pressure is caused by a family history of hypertension, low or no exercise, and an unhealthy diet. Conditions like diabetes or life stages like pregnancy can also affect blood pressure levels.

The best way to know if you have high blood pressure is to check it regularly.

Obesity

Unlike the conditions listed above, obesity is different for every person. Body Mass Index (BMI) determines if a person is overweight.

The World Health Organization (WHO) classifies adults with a BMI of 25 or greater to be overweight and adults with a BMI of 30 or greater to be obese.

Those with excess weight around the midsection are at a higher risk for heart disease and diabetes. This is because most of the organs are in the middle section of the body. The fat in that area releases fatty acids, which are well absorbed by the organs.

Daily exercise and a healthy diet of whole foods can reduce weight and create a healthier lifestyle.

Lab Tests for Metabolic Syndrome

Because several factors that determine a metabolic syndrome diagnosis cannot be physically seen, lab tests can be very helpful in providing insight.

Tests will review several factors, including blood pressure, triglyceride levels, and cholesterol levels.

Benefits of Metabolic Syndrome Test

Metabolic Syndrome can be tracked and even prevented with regular blood work. Ulta Lab Tests provides these important lab tests to screen for, monitor, and manage the metabolic syndrome.

1. In-Depth and Convenient Testing to Help You Learn More About Your Health

Ulta Lab Tests provides several in-depth options for Metabolic Syndrome blood tests. These include glucose control testing, lipoprotein screening, and an advanced Metabolic Syndrome test.

There are 2,100 approved patient service centers across the United States to conduct screenings. A prescription is not needed, and you can arrange your test at any time.

2. Prevention of Metabolic Syndrome

The earlier you learn about your health, the sooner you can take steps to improve it. If test results show you are on the fast path to metabolic syndrome, there are steps to remedy this.

3. Early Metabolic Syndrome Treatment

Early detection of a medical illness can help heal the body. When diseases are not caught soon enough, it can be impossible to reverse the harmful damages.

4. Help Your Family Members

Many diseases are genetic, so it is important to inform any family members that may be susceptible to it. Early diagnosis can help others make lifestyle changes to help them end up in the same situation.

5. Change Your Life For the Better

Once you receive your lab results, you can make the necessary changes to improve your health and your life. Don't delay in taking the next step to bettering yourself.

How to Arrange Lab Testing

Ulta Labs Tests makes it easy to track your health. Visit Ulta Lab Tests and search our database for your desired test. Buy your test online, and after checkout, you will receive a lab requisition.

Take your lab requisition to the nearest Patient Service Center, and they will collect your specimen. Some tests may require that you fast, temporarily stop supplements, or skip brushing your teeth. This information is all clearly stated to make the process very clear and easy to understand.

Results will be ready within a few days and posted to your online patient dashboard.

Taking Control of Your Health

Metabolic Syndrome is on the rise in the United States. Being proactive with your health can not only prevent you from a diagnosis, but it can also help you learn more about your body along the way.

Ulta Lab Tests Metabolic Syndrome Test is very accurate and reliable and can help you make informed decisions about your health. Confidential results will equip you with the knowledge to take the next step in improving your health.

Order your metabolic syndrome lab test today. Take charge of your health and track your progress with Ulta Lab Tests.

Order your metabolic syndrome lab test today, and your results will be provided to you securely and confidentially online in 24 to 48 hours for most tests. Take charge of your health and track your progress with Ulta Lab Tests.