Vitamin B12 Deficiency and Folate Deficiency

Vitamin B12 Deficiency Testing and health information

A diagnosis of vitamin B12 or folate deficiency anemia can often be made based on your symptoms and the results of vitamin b12 tests. If you have symptoms of Vitamin B12 and folate deficiency, it's essential to get tested. Learn about the different types of blood tests here.    


Name Matches

Description: A Folate RBC test measures the levels of folic acid within your red blood cells. These results can be used to determine a folate deficiency and evaluate a person's nutritional status. Anemia and Neuropathy can also be evaluated using the results from this test.

Collection Method: Blood Draw

Specimen Type: Whole Blood

Test Preparation: No preparation required

When is a Folate RBC test ordered?

When a complete blood count and/or blood smear, performed as part of a health checkup or anemia evaluation, reveal a low red blood cell count with the presence of big RBCs, B12 and folate levels may be ordered. A high mean corpuscular volume, in particular, implies that the RBCs are enlarged.

When a person exhibits the following signs and symptoms of a deficit, testing for folate levels may be necessary.

  • Diarrhea
  • Dizziness
  • Muscle weakness, fatigue
  • Appetite loss.
  • Skin that is pale
  • Irregular heartbeats, rapid heart rate
  • Breathing problems
  • Tongue and mouth ache
  • In the feet, hands, arms, and legs, there is tingling, numbness, and/or burning 
  • Confusion or obliviousness
  • Paranoia

When a person is at risk of deficiency, such as those with a history of malnutrition or a condition associated to malabsorption, folate testing may be ordered.

Individuals being treated for malnutrition or a folate deficit may have these tests done on a frequent basis to see how effective their treatments are. This could be part of a long-term therapy plan for people who have a disease that causes chronic deficiency.

What does a Folate RBC test check for?

The B complex of vitamins includes vitamins including vitamin B12 and folate. They are required for the creation of normal red blood cells, tissue and cell repair, and the synthesis of DNA, the genetic material in cells. Both are nutrients that the body cannot make and must be obtained from the diet.

Vitamin B9 tests, also known as folate tests, diagnose vitamin deficiencies by measuring vitamin levels in the liquid section of the blood. The amount of folate in red blood cells is sometimes tested as well.

Folate is a naturally occurring form of the vitamin, whereas folic acid is a supplement that can be added to foods and beverages. Leafy green vegetables, dry beans and peas, citrus fruits, yeast, and liver all contain it. Vitamin B12, also known as cobalamin, can be found in animal-based foods such red meat, fish, poultry, milk, yogurt, and eggs. Fortified cereals, breads, and other grain products have become key sources of B12 and folate in recent years

A lack of folate can cause macrocytic anemia, a condition in which red blood cells are bigger than normal. Megaloblastic anemia is a kind of macrocytic anemia marked by the generation of fewer but larger RBCs known as macrocytes, as well as cellular abnormalities in the bone marrow. Reduced white blood cell and platelet counts are two more test results linked to megaloblastic anemia.

Folate is required for cell division, which occurs in the developing fetus. In a growing fetus, a lack of folate during early pregnancy can raise the chance of neural tube abnormalities such spina bifida.

Folate deficiency is most commonly caused by inadequate intake of the vitamin through diet or supplements, poor absorption, or increased bodily requirement, as observed during pregnancy:

  • Dietary deficiencies are uncommon in the United States since many meals and beverages are fortified with vitamins that the body stores. Adults normally have around three months' worth of folate stored in their liver. Dietary deficiencies normally do not manifest symptoms until the body's vitamin supplies have been exhausted.
  • Increased demand—this can occur as a result of a range of diseases and disorders. When a woman is pregnant or nursing, in early childhood, with malignancies, or with chronic hemolytic anemias, there is an increased demand for folate.

Lab tests often ordered with a Folate RBC test:

  • Complete Blood Count
  • Methylmalonic Acid
  • Homocysteine
  • Vitamin B1
  • Vitamin B3
  • Vitamin B5
  • Vitamin B6
  • Vitamin B7
  • Vitamin B12
  • Intrinsic Factor Antibody
  • Parietal Cell Antibody
  • Reticulocyte Count

Conditions where a Folate RBC test is recommended:

  • Neural Tube Defects
  • Vitamin B12 and Folate Deficiencies
  • Anemia
  • Alcoholism
  • Malnutrition
  • Celiac Disease
  • Malabsorption
  • Neuropathy
  • Nervous System Disorders
  • Inflammatory Bowel Disease

How does my health care provider use a Folate RBC test?

Separate tests for vitamin B12 and folate are frequently used in conjunction to detect deficiencies and to aid in the diagnosis of anemias such as pernicious anemia, an inflammatory condition that inhibits B12 absorption.

B12 and folate are two vitamins that the body cannot generate and must be obtained from the diet. They're needed for red blood cell creation, tissue and cell repair, and DNA synthesis, which is the genetic material in cells. B12 is required for normal nerve function.

B12 and folate tests can also be used to assess someone who is experiencing mental or behavioral changes, especially in the elderly. A B12 test can be ordered with or without folate, as well as with other screening laboratory tests like a complete blood count, comprehensive metabolic panel, antinuclear antibody, C-reactive protein, and rheumatoid factor, to help determine why a person is exhibiting signs and symptoms of a nerve disorder.

B12 and folate tests can also be performed in conjunction with a variety of other tests to assess a person's overall health and nutritional status if they have signs and symptoms of substantial malnutrition or dietary malabsorption. People with alcoholism, liver disease, stomach cancer, or malabsorption diseases including celiac disease, inflammatory bowel disease, or cystic fibrosis may fall into this category.

Testing may be performed to assess the success of treatment in patients with known B12 and folate deficits. This is especially true for people who cannot absorb B12 and/or folate effectively and must be treated for the rest of their lives.

Folate levels in the blood's liquid part might fluctuate depending on a person's recent diet. Because red blood cells contain 95 percent of circulating folate, a test to evaluate folate levels inside RBCs could be employed instead of or in addition to the serum test. Some doctors believe that the RBC folate test is a better predictor of long-term folate status and is more clinically useful than serum folate, however there is no consensus on this.

Homocysteine and methylmalonic acid are two more laboratory tests that can be used to detect B12 and folate deficits. In B12 deficiency, both homocysteine and MMA are high, whereas in folate deficit, only homocysteine, not MMA, is elevated. This distinction is critical because treating anemia with folate treats the anemia but not the brain damage, which may be irreparable.

What do my Folate Serum test results mean?

Normal folate levels may indicate that a person does not suffer from a deficiency and that the signs and symptoms are caused by something else. Normal levels, on the other hand, may indicate that a person's stored folate has not yet been depleted.

A low folate level in a person with signs and symptoms implies a deficiency, although it does not always indicate the severity of the anemia or related neuropathy. Additional tests are frequently performed to determine the source of the deficit. Low folate levels can be caused by a variety of factors.

Dietary folate deficiency is uncommon in the United States. It can be evident in people who are malnourished in general and vegans who do not eat any animal products. Folate deficiency has become extremely rare since the development of fortified cereals, breads, and other grain products.

Folate deficits can be caused by diseases that prevent them from being absorbed in the small intestine. These may include the following:

  • Pernicious anemia.
  • Celiac disease
  • Crohn's disease and ulcerative colitis
  • Bacterial overgrowth or the presence of parasites in the intestines, such as tapeworms
  • Long-term usage of antacids or H2 proton pump inhibitors reduces stomach acid production.
  • Absorption can be considerably reduced by surgery that removes part of the stomach or the intestines, such as gastric bypass.
  • Insufficiency of the pancreas
  • Chronic alcoholism or heavy drinking
  • Some treatments, such as metformin, omeprazole, methotrexate, or anti-seizure medications like phenytoin.
  • Increased requirement for healthy fetal development, all pregnant women require an increased amount of folate and are advised to consume 400 micrograms of folic acid every day. People who have cancer that has spread or who have chronic hemolytic anemia require more folate.
  • Smoking

If a person is taking supplements to treat a folate deficiency, normal or higher findings indicate that the treatment is working.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Most Popular

Description: A Folate test measures the levels of folic acid in the blood. These results can be used to determine a folate deficiency and evaluate a person's nutritional status. Anemia and Neuropathy can also be evaluated using the results from this test.

Also Known As: Folate Serum Test, Folic Acid Test, Vitamin B9 Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is a Folate test ordered?

When a complete blood count and/or blood smear, performed as part of a health checkup or anemia evaluation, reveal a low red blood cell count with the presence of big RBCs, B12 and folate levels may be ordered. A high mean corpuscular volume, in particular, implies that the RBCs are enlarged.

When a person exhibits the following signs and symptoms of a deficit, testing for folate levels may be necessary.

  • Diarrhea
  • Dizziness
  • Muscle weakness, fatigue
  • Appetite loss.
  • Skin that is pale
  • Irregular heartbeats, rapid heart rate
  • Breathing problems
  • Tongue and mouth ache
  • In the feet, hands, arms, and legs, there is tingling, numbness, and/or burning 
  • Confusion or obliviousness
  • Paranoia

When a person is at risk of deficiency, such as those with a history of malnutrition or a condition associated to malabsorption, folate testing may be ordered.

Individuals being treated for malnutrition or a folate deficit may have these tests done on a frequent basis to see how effective their treatments are. This could be part of a long-term therapy plan for people who have a disease that causes chronic deficiency.

What does a Folate blood test check for?

The B complex of vitamins includes vitamins including vitamin B12 and folate. They are required for the creation of normal red blood cells, tissue and cell repair, and the synthesis of DNA, the genetic material in cells. Both are nutrients that the body cannot make and must be obtained from the diet.

Vitamin B9 tests, also known as folate tests, diagnose vitamin deficiencies by measuring vitamin levels in the liquid section of the blood. The amount of folate in red blood cells is sometimes tested as well.

Folate is a naturally occurring form of the vitamin, whereas folic acid is a supplement that can be added to foods and beverages. Leafy green vegetables, dry beans and peas, citrus fruits, yeast, and liver all contain it. Vitamin B12, also known as cobalamin, can be found in animal-based foods such red meat, fish, poultry, milk, yogurt, and eggs. Fortified cereals, breads, and other grain products have become key sources of B12 and folate in recent years

A lack of folate can cause macrocytic anemia, a condition in which red blood cells are bigger than normal. Megaloblastic anemia is a kind of macrocytic anemia marked by the generation of fewer but larger RBCs known as macrocytes, as well as cellular abnormalities in the bone marrow. Reduced white blood cell and platelet counts are two more test results linked to megaloblastic anemia.

Folate is required for cell division, which occurs in the developing fetus. In a growing fetus, a lack of folate during early pregnancy can raise the chance of neural tube abnormalities such spina bifida.

Folate deficiency is most commonly caused by inadequate intake of the vitamin through diet or supplements, poor absorption, or increased bodily requirement, as observed during pregnancy:

  • Dietary deficiencies are uncommon in the United States since many meals and beverages are fortified with vitamins that the body stores. Adults normally have around three months' worth of folate stored in their liver. Dietary deficiencies normally do not manifest symptoms until the body's vitamin supplies have been exhausted.
  • Increased demand—this can occur as a result of a range of diseases and disorders. When a woman is pregnant or nursing, in early childhood, with malignancies, or with chronic hemolytic anemias, there is an increased demand for folate.

Lab tests often ordered with a Folate test:

  • Complete Blood Count
  • Methylmalonic Acid
  • Homocysteine
  • Vitamin B1
  • Vitamin B3
  • Vitamin B5
  • Vitamin B6
  • Vitamin B7
  • Vitamin B12
  • Intrinsic Factor Antibody
  • Parietal Cell Antibody
  • Reticulocyte Count

Conditions where a Folate test is recommended:

  • Neural Tube Defects
  • Vitamin B12 and Folate Deficiencies
  • Anemia
  • Alcoholism
  • Malnutrition
  • Celiac Disease
  • Malabsorption
  • Neuropathy
  • Nervous System Disorders
  • Inflammatory Bowel Disease

How does my health care provider use a Folate test?

Separate tests for vitamin B12 and folate are frequently used in conjunction to detect deficiencies and to aid in the diagnosis of anemias such as pernicious anemia, an inflammatory condition that inhibits B12 absorption.

B12 and folate are two vitamins that the body cannot generate and must be obtained from the diet. They're needed for red blood cell creation, tissue and cell repair, and DNA synthesis, which is the genetic material in cells. B12 is required for normal nerve function.

B12 and folate tests can also be used to assess someone who is experiencing mental or behavioral changes, especially in the elderly. A B12 test can be ordered with or without folate, as well as with other screening laboratory tests like a complete blood count, comprehensive metabolic panel, antinuclear antibody, C-reactive protein, and rheumatoid factor, to help determine why a person is exhibiting signs and symptoms of a nerve disorder.

B12 and folate tests can also be performed in conjunction with a variety of other tests to assess a person's overall health and nutritional status if they have signs and symptoms of substantial malnutrition or dietary malabsorption. People with alcoholism, liver disease, stomach cancer, or malabsorption diseases including celiac disease, inflammatory bowel disease, or cystic fibrosis may fall into this category.

Testing may be performed to assess the success of treatment in patients with known B12 and folate deficits. This is especially true for people who cannot absorb B12 and/or folate effectively and must be treated for the rest of their lives.

Folate levels in the blood's liquid part might fluctuate depending on a person's recent diet. Because red blood cells contain 95 percent of circulating folate, a test to evaluate folate levels inside RBCs could be employed instead of or in addition to the serum test. Some doctors believe that the RBC folate test is a better predictor of long-term folate status and is more clinically useful than serum folate, however there is no consensus on this.

Homocysteine and methylmalonic acid are two more laboratory tests that can be used to detect B12 and folate deficits. In B12 deficiency, both homocysteine and MMA are high, whereas in folate deficit, only homocysteine, not MMA, is elevated. This distinction is critical because treating anemia with folate treats the anemia but not the brain damage, which may be irreparable.

What do my Folate Serum test results mean?

Normal folate levels may indicate that a person does not suffer from a deficiency and that the signs and symptoms are caused by something else. Normal levels, on the other hand, may indicate that a person's stored folate has not yet been depleted.

A low folate level in a person with signs and symptoms implies a deficiency, although it does not always indicate the severity of the anemia or related neuropathy. Additional tests are frequently performed to determine the source of the deficit. Low folate levels can be caused by a variety of factors.

Dietary folate deficiency is uncommon in the United States. It can be evident in people who are malnourished in general and vegans who do not eat any animal products. Folate deficiency has become extremely rare since the development of fortified cereals, breads, and other grain products.

Folate deficits can be caused by diseases that prevent them from being absorbed in the small intestine. These may include the following:

  • Pernicious anemia.
  • Celiac disease
  • Crohn's disease and ulcerative colitis
  • Bacterial overgrowth or the presence of parasites in the intestines, such as tapeworms
  • Long-term usage of antacids or H2 proton pump inhibitors reduces stomach acid production.
  • Absorption can be considerably reduced by surgery that removes part of the stomach or the intestines, such as gastric bypass.
  • Insufficiency of the pancreas
  • Chronic alcoholism or heavy drinking
  • Some treatments, such as metformin, omeprazole, methotrexate, or anti-seizure medications like phenytoin.
  • Increased requirement for healthy fetal development, all pregnant women require an increased amount of folate and are advised to consume 400 micrograms of folic acid every day. People who have cancer that has spread or who have chronic hemolytic anemia require more folate.
  • Smoking

If a person is taking supplements to treat a folate deficiency, normal or higher findings indicate that the treatment is working.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Clinical Significance
Micronutrient, Folate

Patients must be 18 years of age or greater.

Reference Range(s)
≥18 years    >5.4 ng/mL
Reference range not available for individuals <18 years for this micronutrient test.


Clinical Significance
Micronutrients, Antioxidants Panel

Patients must be 18 years of age or greater.

Includes
Micronutrient, Coenzyme Q10 (CoQ10)
Micronutrient, Vitamin A (Retinol)
Micronutrient, Vitamin C
Micronutrient, Vitamin E

Patient Preparation
Overnight fasting required.
Avoid taking Coenzyme Q10 supplements the morning of the test.
Refrain from eating fruits or taking vitamin C supplements 24 hours prior to collection.

Reference Range(s)
Coenzyme Q10 (CoQ10)    >35 ug/mL
Vitamin A (Retinol)
18-19 years    26-72 mcg/dL
>19 years    38-98 mcg/dL
Reference range not available for individuals <18 years for this micronutrient test.

Vitamin C
Male ≥18 years    0.2-2.1 mg/dL
Female ≥18 years    0.3-2.7 mg/dL
Reference range not available for individuals <18 years for this micronutrient test.

Vitamin E
Alpha Tocopherol    ≥18 years    5.7-19.9 mg/L
Beta-Gamma Tocopherol    ≥18 years    <4.4 mg/L
Reference range not available for individuals <18 years for this micronutrient test.


Clinical Significance
Micronutrient, Vitamin B12 - B12 is decreased in pernicious anemia, total or partial gastrectomy, malabsorption and certain congenital and biochemical disorders.

Patients must be 18 years of age or greater.

Reference Range(s)
≥18 years    200-1100 pg/mL
Reference range not available for individuals <18 years for this micronutrient test.


Description: A Vitamin B12 test is a blood test that measures the level of Vitamin B12 in the blood’s serum and is used to detect Vitamin B12 deficiency.

Also Known As:  B12 Test, Cobalamin Test, Vitamin B12 test, Serum B12 Test 

Collection Method: Blood Draw 

Specimen Type: Serum 

Test Preparation: No preparation required. 

When is a Vitamin B12 test ordered?  

When a complete blood count and/or blood smear, performed as part of a health checkup or anemia evaluation, reveal a low red blood cell count with the presence of big RBCs, vitamin B12 levels may be ordered. A high mean corpuscular volume implies that the RBCs have grown in size. 

When a person exhibits the following signs and symptoms of a deficit, testing for B12 levels may be necessary: 

  • Diarrhea 
  • Dizziness 
  • Muscle weakness, fatigue 
  • Appetite loss. 
  • Skin that is pale 
  • Irregular heartbeats, rapid heart rate 
  • Breathing problems 
  • Tongue and mouth ache 
  • In the feet, hands, arms, and legs, there is tingling, numbness, and/or burning 
  • Confusion or obliviousness 
  • Paranoia 

When a person is at risk of deficiency, such as those with a history of malnutrition or a condition associated to malabsorption, B12 tests may be required. 

Individuals being treated for malnutrition or a B12 or folate deficit may have these tests done on a frequent basis to see how effective their treatments are. This could be part of a long-term therapy plan for people who have a disease that causes chronic deficiency.  

What does a Vitamin B12 blood test check for? 

Vitamin B12 is a member of the vitamin B complex. It is required for the creation of normal red blood cells, tissue and cell healing, and the synthesis of DNA, the genetic material in cells. Vitamin B12 is a nutrient that the body cannot make and must be obtained through the diet. 

Vitamin B12 deficiency is detected by measuring vitamin B12 in the liquid portion of the blood. 

A B12 deficiency can cause macrocytic anemia, which is characterized by red blood cells that are bigger than normal. Megaloblastic anemia is a kind of macrocytic anemia marked by the generation of fewer but larger RBCs known as macrocytes, as well as cellular abnormalities in the bone marrow. Reduced white blood cell and platelet count are two other test results linked to megaloblastic anemia. 

B12 is also necessary for nerve function, and a lack of it can induce neuropathy, which causes tingling and numbness in the hands and feet of those who are affected. 

B12 deficiency is most commonly caused by a lack of vitamin B12 in the diet or supplements, insufficient absorption, or an increased requirement, such as during pregnancy. 

Lab tests often ordered with a Vitamin B12 test: 

  • Folate 
  • Methylmalonic Acid (MMA) 
  • Homocysteine 
  • Vitamin B1 
  • Vitamin B2 
  • Vitamin B3 
  • Vitamin B5 
  • Vitamin B6 
  • Vitamin B7 
  • Rheumatoid factor 

Conditions where a Vitamin B12 test is recommended:

  • Vitamin B12 Deficiency 
  • Pernicious Anemia 
  • Nerve Damage 
  • Malabsorption 
  • Malnutrition 

How does my health care provider use a Vitamin B12 test? 

Vitamin B12 and folate are frequently used in conjunction to detect deficiencies and to aid in the diagnosis of anemias such as pernicious anemia, an inflammatory condition that inhibits B12 absorption. 

B12 and folate are two vitamins that the body cannot generate and must be obtained from the diet. They are essential for the creation of normal red blood cells, tissue and cell repair, and the synthesis of DNA, the genetic material in cells. B12 is required for normal nerve function. 

B12 and folate tests can also be used to assess someone who is experiencing mental or behavioral changes, especially in the elderly. A B12 test can be ordered with or without folate, as well as with other screening laboratory tests like a complete blood count, comprehensive metabolic panel, antinuclear antibody, C-reactive protein, and rheumatoid factor to help determine why a person is exhibiting signs and symptoms of a nerve condition. 

B12 and folate tests can also be performed in conjunction with a variety of other tests to assess a person's overall health and nutritional status if they have signs and symptoms of substantial malnutrition or dietary malabsorption. People with alcoholism, liver disease, stomach cancer, or malabsorption diseases including celiac disease, inflammatory bowel disease, or cystic fibrosis may fall into this category. 

Testing may be performed to assess the success of treatment in patients with known B12 and folate deficits. This is especially true for people who cannot absorb B12 and/or folate effectively and must be treated for the rest of their lives. 

Folate levels in the blood's serum might fluctuate depending on a person's recent diet. Because red blood cells contain 95 percent of circulating folate, a test to evaluate folate levels inside RBCs could be employed instead of or in addition to the serum test. Some doctors believe that the RBC folate test is a better predictor of long-term folate status and is more clinically useful than serum folate, however there is no consensus on this. 

Homocysteine and methylmalonic acid are two more laboratory tests that can be used to detect B12 and folate deficits. In B12 deficiency, both homocysteine and MMA are high, whereas in folate deficit, only homocysteine, not MMA, is elevated. This distinction is critical because treating anemia with folate treats the anemia but not the brain damage, which may be irreparable. 

What do my Vitamin B12 test results mean? 

Normal B12 and folate levels may indicate that a person does not suffer from a deficiency and that the signs and symptoms they are experiencing?are caused by something else. Normal levels, on the other hand, may indicate that a person's stored B12 and/or folate has not yet been depleted. 

A health practitioner may order a methylmalonic acid test as an early sign of B12 deficiency if a B12 level is normal but a deficiency is still suspected. 

A low B12 and/or folate level in a person with signs and symptoms implies a deficiency, although it does not always indicate the severity of the anemia or related neuropathy. Additional tests are frequently performed to determine the source of the deficit. Low B12 or folate levels can be caused by a variety of factors. 

Dietary folate or B12 deficiency, which?is uncommon in the United States. It can be evident in people who are malnourished in general and vegans who do not eat any animal products. Folate deficiency has become extremely rare since the development of fortified cereals, breads, and other grain products. 

Both B12 and folate deficits can be caused by diseases that prevent them from being absorbed in the small intestine. These may include the following: 

  • Pernicious anemia 
  • Celiac disease 
  • Crohn's disease and ulcerative colitis are examples of inflammatory bowel disease. 
  • Bacterial overgrowth or the presence of parasites in the intestines, such as tapeworms 
  • Long-term usage of antacids or H2 proton pump inhibitors reduces stomach acid production. 
  • Absorption can be considerably reduced by surgery that removes part of the stomach or the intestines, such as gastric bypass. 
  • Insufficiency of the pancreas 
  • Chronic alcoholism or heavy drinking 
  • Some treatments, such as metformin, omeprazole, methotrexate, or anti-seizure medications like phenytoin, are used. 
  • Increased requirements for healthy fetal development, all pregnant women require an increased amount of folate and are advised to consume 400 micrograms of folic acid every day. The need for folate is higher in those who have cancer that has spread or who have chronic hemolytic anemia. 
  • Smoking 

If a person is being treated for a B12 or folate deficit with supplements, normal or higher findings suggest that the treatment is working. 

High amounts of B12 are uncommon, and they aren't routinely evaluated clinically. If a person has a condition such chronic myeloproliferative neoplasm, diabetes, heart failure, obesity, AIDS, or severe liver disease, their vitamin B12 level may be elevated. High B12 levels can also be caused by using estrogens, vitamin C, or vitamin A. 

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: A B12 and Folate test measures the levels of B12 and folic acid in the blood. These results can be used to determine a B12 and/or folate deficiency and evaluate a person's nutritional status. Anemia and Neuropathy can also be evaluated using the results from this test.

Also Known As: Vitamin B12 and Folate test, Cobalamin and Folic Acid Test, Vitamin B12 and Vitamin B9 Test, Vitamin B12 Test, Vitamin B9 Test, Cobalamin Test, Folic Acid Test, Folate Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is Vitamin B12 and Folate panel test ordered?

When a complete blood count and/or blood smear, performed as part of a health checkup or anemia evaluation, reveal a low red blood cell count with the presence of big RBCs, B12 and folate levels may be ordered. A high mean corpuscular volume, in particular, implies that the RBCs are enlarged.

When a person exhibits the following signs and symptoms of a deficit, testing for B12 and folate levels may be necessary.

  • Diarrhea
  • Dizziness
  • Muscle weakness, fatigue
  • Appetite loss.
  • Skin that is pale
  • Irregular heartbeats, rapid heart rate
  • Breathing problems
  • Tongue and mouth ache
  • In the feet, hands, arms, and legs, there is tingling, numbness, and/or burning 
  • Confusion or obliviousness
  • Paranoia

When a person is at risk of deficiency, such as those with a history of malnutrition or a condition associated to malabsorption, B12 and folate testing may be ordered.

Individuals being treated for malnutrition or a B12 or folate deficit may have these tests done on a frequent basis to see how effective their treatments are. This could be part of a long-term therapy plan for people who have a disease that causes chronic deficiency.

What does a Vitamin B12 and Folate panel blood test check for?

The B complex of vitamins includes vitamins including vitamin B12 and folate. They are required for the creation of normal red blood cells, tissue and cell repair, and the synthesis of DNA, the genetic material in cells. Both are nutrients that the body cannot make and must be obtained from the diet.

Vitamin B12 and folate tests diagnose vitamin deficiencies by measuring vitamin levels in the liquid section of the blood. The amount of folate in red blood cells is sometimes tested as well.

Folate is a naturally occurring form of the vitamin, whereas folic acid is a supplement that can be added to foods and beverages. Leafy green vegetables, dry beans and peas, citrus fruits, yeast, and liver all contain it. Vitamin B12, also known as cobalamin, can be found in animal-based foods such red meat, fish, poultry, milk, yogurt, and eggs. Fortified cereals, breads, and other grain products have become key sources of B12 and folate in recent years.

A lack of B12 or folate can cause macrocytic anemia, a condition in which red blood cells are bigger than normal. Megaloblastic anemia is a kind of macrocytic anemia marked by the generation of fewer but larger RBCs known as macrocytes, as well as cellular abnormalities in the bone marrow. Reduced white blood cell and platelet counts are two more test results linked to megaloblastic anemia.

B12 is also necessary for nerve function, and a lack of it can induce neuropathy, which causes tingling and numbness in the hands and feet of those who are affected.

Folate is required for cell division, which occurs in the developing fetus. In a growing fetus, a lack of folate during early pregnancy can raise the chance of neural tube abnormalities such spina bifida.

B12 and folate deficiency is most commonly caused by not getting enough of the vitamins through diet or supplements, poor absorption, or increased requirement, as observed during pregnancy:

  • Dietary deficiencies are uncommon in the United States since many meals and beverages are fortified with vitamins that the body stores. Adults normally have many years' worth of vitamin B12 and around three months' worth of folate stored in their liver. Dietary deficiencies normally do not manifest symptoms until the body's vitamin supplies have been exhausted. Vegans and their breast-fed infants can suffer from B12 deficiency.
  • Inadequate absorption—the absorption of vitamin B12 is a multi-step process. B12 is normally released from food by stomach acid and then bound to intrinsic factor, a protein produced by parietal cells in the stomach, in the small intestine. After being absorbed by the small intestine and bound by carrier proteins, the B12-IF complex reaches the blood. B12 absorption is hampered if any of these processes are disrupted by a disease or condition.
  • Increased demand—this can occur as a result of a range of diseases and disorders. When a woman is pregnant or nursing, in early childhood, with malignancies, or with chronic hemolytic anemias, there is an increased demand for folate.

Lab tests often ordered with a Vitamin B12 and Folate panel test:

  • Complete Blood Count
  • Methylmalonic Acid
  • Homocysteine
  • Vitamin B1
  • Vitamin B3
  • Vitamin B5
  • Vitamin B6
  • Vitamin B7
  • Intrinsic Factor Antibody
  • Parietal Cell Antibody
  • Reticulocyte Count

Conditions where a Vitamin B12 and Folate panel test is recommended:

  • Neural Tube Defects
  • Vitamin B12 and Folate Deficiencies
  • Anemia
  • Alcoholism
  • Malnutrition
  • Celiac Disease
  • Malabsorption
  • Neuropathy
  • Inflammatory Bowel Disease

How does my health care provider use a Vitamin B12 and Folate panel test?

Separate tests for vitamin B12 and folate are frequently used in conjunction to detect deficiencies and to aid in the diagnosis of anemias such as pernicious anemia, an inflammatory condition that inhibits B12 absorption.

B12 and folate are two vitamins that the body cannot generate and must be obtained from the diet. They're needed for red blood cell creation, tissue and cell repair, and DNA synthesis, which is the genetic material in cells. B12 is required for normal nerve function.

B12 and folate tests can also be used to assess someone who is experiencing mental or behavioral changes, especially in the elderly. A B12 test can be ordered with or without folate, as well as with other screening laboratory tests like a complete blood count, comprehensive metabolic panel, antinuclear antibody, C-reactive protein, and rheumatoid factor, to help determine why a person is exhibiting signs and symptoms of a nerve disorder.

B12 and folate tests can also be performed in conjunction with a variety of other tests to assess a person's overall health and nutritional status if they have signs and symptoms of substantial malnutrition or dietary malabsorption. People with alcoholism, liver disease, stomach cancer, or malabsorption diseases including celiac disease, inflammatory bowel disease, or cystic fibrosis may fall into this category.

Testing may be performed to assess the success of treatment in patients with known B12 and folate deficits. This is especially true for people who cannot absorb B12 and/or folate effectively and must be treated for the rest of their lives.

Folate levels in the blood's liquid part might fluctuate depending on a person's recent diet. Because red blood cells contain 95 percent of circulating folate, a test to evaluate folate levels inside RBCs could be employed instead of or in addition to the serum test. Some doctors believe that the RBC folate test is a better predictor of long-term folate status and is more clinically useful than serum folate, however there is no consensus on this.

Homocysteine and methylmalonic acid are two more laboratory tests that can be used to detect B12 and folate deficits. In B12 deficiency, both homocysteine and MMA are high, whereas in folate deficit, only homocysteine, not MMA, is elevated. This distinction is critical because treating anemia with folate treats the anemia but not the brain damage, which may be irreparable.

What do my Vitamin B12 and Folate test results mean?

Normal B12 and folate levels may indicate that a person does not suffer from a deficiency and that the signs and symptoms are caused by something else. Normal levels, on the other hand, may indicate that a person's stored B12 and/or folate has not yet been depleted.

A health practitioner may request a methylmalonic acid test as an early sign of B12 insufficiency if a B12 level is normal but a deficiency is still suspected.

A low B12 and/or folate level in a person with signs and symptoms implies a deficiency, although it does not always indicate the severity of the anemia or related neuropathy. Additional tests are frequently performed to determine the source of the deficit. Low B12 or folate levels can be caused by a variety of factors, including:

Dietary folate or B12 deficiency is uncommon in the United States. It can be evident in people who are malnourished in general and vegans who do not eat any animal products. Folate deficiency has become extremely rare since the development of fortified cereals, breads, and other grain products.

Both B12 and folate deficits can be caused by diseases that prevent them from being absorbed in the small intestine. These may include the following:

  • Pernicious anemia.
  • Celiac disease
  • Crohn's disease and ulcerative colitis
  • Bacterial overgrowth or the presence of parasites in the intestines, such as tapeworms
  • Long-term usage of antacids or H2 proton pump inhibitors reduces stomach acid production.
  • Absorption can be considerably reduced by surgery that removes part of the stomach or the intestines, such as gastric bypass.
  • Insufficiency of the pancreas
  • Chronic alcoholism or heavy drinking
  • Some treatments, such as omeprazole, metformin, methotrexate, and/or anti-seizure medications like phenytoin.
  • Increased requirement for healthy fetal development, all pregnant women require an increased amount of folate and are advised to consume 400 micrograms of folic acid every day. People who have cancer that has spread or who have chronic hemolytic anemia require more folate.
  • Smoking

If a person is taking supplements to treat a B12 or folate deficiency, normal or higher findings indicate that the treatment is working.

High amounts of B12 are uncommon, and they aren't routinely evaluated clinically. If a person has a condition such chronic myeloproliferative neoplasm, diabetes, heart failure, obesity, AIDS, or severe liver disease, their vitamin B12 level may be elevated. High B12 levels can also be caused by using estrogens, vitamin C, or vitamin A.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Vitamin B12 Binding Capacity, Unsaturated (Transcobalamin)

Clinical Significance

Vitamin B12 Binding Capacity, Unsaturated (Transcobalamin), binds and transports vitamin B12 in the circulation. Increased concentrations are associated with patients with myeloproliferative disorders. Decreased concentrations are seen in individuals with megaloblastic anemia or Transcobalamin deficiency.

Alternative Name(s) 

Transcobalamin, B12 Binding Capacity


Description: A CBC or Complete Blood Count with Differential and Platelets test is a blood test that measures many important features of your blood’s red and white blood cells and platelets. A Complete Blood Count can be used to evaluate your overall health and detect a wide variety of conditions such as infection, anemia, and leukemia. It also looks at other important aspects of your blood health such as hemoglobin, which carries oxygen. 

Also Known As: CBC test, Complete Blood Count Test, Total Blood Count Test, CBC with Differential and Platelets test, Hemogram test  

Collection Method: Blood Draw 

Specimen Type: Whole Blood 

Test Preparation: No preparation required 

When is a Complete Blood Count test ordered?  

The complete blood count (CBC) is an extremely common test. When people go to the doctor for a standard checkup or blood work, they often get a CBC. Suppose a person is healthy and their results are within normal ranges. In that case, they may not need another CBC unless their health condition changes, or their healthcare professional believes it is necessary. 

When a person exhibits a variety of signs and symptoms that could be connected to blood cell abnormalities, a CBC may be done. A health practitioner may request a CBC to help diagnose and determine the severity of lethargy or weakness, as well as infection, inflammation, bruises, or bleeding. 

When a person is diagnosed with a disease that affects blood cells, a CBC is frequently done regularly to keep track of their progress. Similarly, if someone is being treated for a blood condition, a CBC may be performed on a regular basis to see if the treatment is working. 

Chemotherapy, for example, can influence the generation of cells in the bone marrow. Some drugs can lower WBC counts in the long run. To monitor various medication regimens, a CBC may be required on a regular basis. 

What does a Complete Blood Count test check for? 

The complete blood count (CBC) is a blood test that determines the number of cells in circulation. White blood cells (WBCs), red blood cells (RBCs), and platelets (PLTs) are three types of cells suspended in a fluid called plasma. They are largely created and matured in the bone marrow and are released into the bloodstream when needed under normal circumstances. 

A CBC is mainly performed with an automated machine that measures a variety of factors, including the number of cells present in a person's blood sample. The findings of a CBC can reveal not only the quantity of different cell types but also the physical properties of some of the cells. 

Significant differences in one or more blood cell populations may suggest the presence of one or more diseases. Other tests are frequently performed to assist in determining the reason for aberrant results. This frequently necessitates visual confirmation via a microscope examination of a blood smear. A skilled laboratory technician can assess the appearance and physical features of blood cells, such as size, shape, and color, and note any anomalies. Any extra information is taken note of and communicated to the healthcare provider. This information provides the health care provider with further information about the cause of abnormal CBC results. 

The CBC focuses on three different types of cells: 

WBCs (White Blood Cells) 

The body uses five different types of WBCs, also known as leukocytes, to keep itself healthy and battle infections and other types of harm. The five different leukocytes are eosinophiles, lymphocytes, neutrophiles, basophils, and monocytes. They are found in relatively steady numbers in the blood. Depending on what is going on in the body, these values may momentarily rise or fall. An infection, for example, can cause the body to manufacture more neutrophils in order to combat bacterial infection. The amount of eosinophils in the body may increase as a result of allergies. A viral infection may cause an increase in lymphocyte production. Abnormal (immature or mature) white cells multiply fast in certain illness situations, such as leukemia, raising the WBC count. 

RBCs (Red Blood Cells) 

The bone marrow produces red blood cells, also known as erythrocytes, which are transferred into the bloodstream after maturing. Hemoglobin, a protein that distributes oxygen throughout the body, is found in these cells. Because RBCs have a 120-day lifespan, the bone marrow must constantly manufacture new RBCs to replace those that have aged and disintegrated or have been lost due to hemorrhage. A variety of diseases, including those that cause severe bleeding, can alter the creation of new RBCs and their longevity. 

The CBC measures the number of RBCs and hemoglobin in the blood, as well as the proportion of RBCs in the blood (hematocrit), and if the RBC population appears to be normal. RBCs are generally homogeneous in size and shape, with only minor differences; however, considerable variances can arise in illnesses including vitamin B12 and folate inadequacy, iron deficiency, and a range of other ailments. Anemia occurs when the concentration of red blood cells and/or the amount of hemoglobin in the blood falls below normal, resulting in symptoms such as weariness and weakness. In a far smaller percentage of cases, there may be an excess of RBCs in the blood (erythrocytosis or polycythemia). This might obstruct the flow of blood through the tiny veins and arteries in extreme circumstances. 

Platelets 

Platelets, also known as thrombocytes, are small cell fragments that aid in the regular clotting of blood. A person with insufficient platelets is more likely to experience excessive bleeding and bruises. Excess platelets can induce excessive clotting or excessive bleeding if the platelets are not operating properly. The platelet count and size are determined by the CBC. 

Lab tests often ordered with a Complete Blood Count test: 

  • Reticulocytes
  • Iron and Total Iron Binding Capacity
  • Basic Metabolic Panel
  • Comprehensive Metabolic Panel
  • Lipid Panel
  • Vitamin B12 and Folate
  • Prothrombin with INR and Partial Thromboplastin Times
  • Sed Rate (ESR)
  • C-Reactive Protein
  • Epstein-Barr Virus
  • Von Willebrand Factor Antigen

Conditions where a Complete Blood Count test is recommended: 

  • Anemia
  • Aplastic Anemia
  • Iron Deficiency Anemia
  • Vitamin B12 and Folate Deficiency
  • Sickle Cell Anemia
  • Heart Disease
  • Thalassemia
  • Leukemia
  • Autoimmune Disorders
  • Cancer
  • Bleeding Disorders
  • Inflammation
  • Epstein-Barr Virus
  • Mononucleosis

Commonly Asked Questions: 

How does my health care provider use a Complete Blood Count test? 

The complete blood count (CBC) is a common, comprehensive screening test used to measure a person's overall health status.  

What do my Complete Blood Count results mean? 

A low Red Blood Cell Count, also known as anemia, could be due many different causes such as chronic bleeding, a bone marrow disorder, and nutritional deficiency just to name a few. A high Red Blood Cell Count, also known as polycythemia, could be due to several conditions including lung disease, dehydration, and smoking. Both Hemoglobin and Hematocrit tend to reflect Red Blood Cell Count results, so if your Red Blood Cell Count is low, your Hematocrit and Hemoglobin will likely also be low. Results should be discussed with your health care provider who can provide interpretation of your results and determine the appropriate next steps or lab tests to further investigate your health. 

What do my Differential results mean? 

A low White Blood Cell count or low WBC count, also known as leukopenia, could be due to a number of different disorders including autoimmune issues, severe infection, and lymphoma. A high White Blood Cell count, or high WBC count, also known as leukocytosis, can also be due to many different disorders including infection, leukemia, and inflammation. Abnormal levels in your White Blood Cell Count will be reflected in one or more of your different white blood cells. Knowing which white blood cell types are affected will help your healthcare provider narrow down the issue. Results should be discussed with your health care provider who can provide interpretation of your results and determine the appropriate next steps or lab tests to further investigate your health. 

What do my Platelet results mean? 

A low Platelet Count, also known as thrombocytopenia, could be due to a number of different disorders including autoimmune issues, viral infection, and leukemia. A high Platelet Count, also known as Thrombocytosis, can also be due to many different disorders including cancer, iron deficiency, and rheumatoid arthritis. Results should be discussed with your health care provider who can provide interpretation of your results and determine the appropriate next steps or lab tests to further investigate your health. 

NOTE: Only measurable biomarkers will be reported. Certain biomarkers do not appear in healthy individuals. 

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.

Reflex Parameters for Manual Slide Review
  Less than  Greater Than 
WBC  1.5 x 10^3  30.0 x 10^3 
Hemoglobin  7.0 g/dL  19.0 g/dL 
Hematocrit  None  75%
Platelet  100 x 10^3  800 x 10^3 
MCV  70 fL  115 fL 
MCH  22 pg  37 pg 
MCHC  29 g/dL  36.5 g/dL 
RBC  None  8.00 x 10^6 
RDW  None  21.5
Relative Neutrophil %  1% or ABNC <500  None 
Relative Lymphocyte %  1% 70%
Relative Monocyte %  None  25%
Eosinophil  None  35%
Basophil  None  3.50%
     
Platelet  <75 with no flags,
>100 and <130 with platelet clump flag present,
>1000 
Instrument Flags Variant lymphs, blasts,
immature neutrophils,  nRBC’s, abnormal platelets,
giant platelets, potential interference
     
The automated differential averages 6000+ cells. If none of the above parameters are met, the results are released without manual review.
CBC Reflex Pathway

Step 1 - The slide review is performed by qualified Laboratory staff and includes:

  • Confirmation of differential percentages
  • WBC and platelet estimates, when needed
  • Full review of RBC morphology
  • Comments for toxic changes, RBC inclusions, abnormal lymphs, and other
  • significant findings
  • If the differential percentages agree with the automated counts and no abnormal cells are seen, the automated differential is reported with appropriate comments

Step 2 - The slide review is performed by qualified Laboratory staff and includes: If any of the following are seen on the slide review, Laboratory staff will perform a manual differential:

  • Immature, abnormal, or toxic cells
  • nRBC’s
  • Disagreement with automated differential
  • Atypical/abnormal RBC morphology
  • Any RBC inclusions

Step 3 If any of the following are seen on the manual differential, a Pathologist will review the slide:

  • WBC<1,500 with abnormal cells noted
  • Blasts/immature cells, hairy cell lymphs, or megakaryocytes
  • New abnormal lymphocytes or monocytes
  • Variant or atypical lymphs >15%
  • Blood parasites
  • RBC morphology with 3+ spherocytes, RBC inclusions, suspect Hgb-C,
  • crystals, Pappenheimer bodies or bizarre morphology
  • nRBC’s

Most Popular

Description: Homocysteine is an amino acid that is present in every cell. There is a small amount present as it is an amino acid that changes quickly into other needed products in the body.

Also Known As: Homocysteine Cardiac Risk Test, Homocysteine Blood Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: Fasting for at least 8 hours is preferred

When is a Homocysteine test ordered?

When a doctor feels a person may be deficient in vitamin B12 or folate, he or she may request this test. At first, the signs and symptoms are vague and ambiguous. People who have an early deficit may be diagnosed before they show any visible symptoms. Other persons who are impacted may experience a range of moderate to severe symptoms, including:

  • Diarrhea
  • Dizziness
  • Weakness and exhaustion
  • Appetite loss
  • Paleness
  • Heart rate that is quite fast
  • Breathing problems
  • Tongue and mouth ache
  • In the feet, hands, arms, and legs, there is tingling, numbness, and/or burning

Depending on an individual's age and other risk factors, homocysteine may be requested as part of determining a person's risk of developing cardiovascular disease. It may also be ordered after a heart attack or stroke to aid in treatment planning.

When newborn screening identifies an increased level of methionine or if an infant or kid shows signs and symptoms of homocystinuria, this test may be ordered. Babies with this illness will appear normal at birth, but if left untreated, they will develop symptoms such as a displaced lens in the eye, a long slender build, long thin fingers, and skeletal abnormalities within a few years.

What does a Homocysteine blood test check for?

Homocysteine is an amino acid that is found in trace amounts in all of the body's cells. The body generally converts homocysteine to other compounds fast. Because vitamins B6, B12, and folate are required for homocysteine metabolism, elevated levels of the amino acid could indicate a vitamin deficit. The level of homocysteine in the blood is determined by this test.

Increased homocysteine levels have also been linked to an increased risk of coronary heart disease, stroke, peripheral vascular disease, and artery hardening. Homocysteine has been linked to cardiovascular disease risk through a variety of processes, including damage to blood vessel walls and support for the production of abnormal blood clots, but no direct linkages have been established. Several studies have also found no benefit or reduction in CVD risk with folic acid and B vitamin supplementation. The American Heart Association does not believe it to be a significant risk factor for heart disease at this time.

Homocysteine levels in the blood can also be dramatically increased by a rare genetic disorder known as homocystinuria. In homocystinuria, one of multiple genes is mutated, resulting in a defective enzyme that prevents the normal breakdown of methionine, the precursor of homocysteine. Methionine is one of the eleven necessary amino acids that the body cannot make and must therefore be obtained from food.

Homocysteine and methionine build up in the body without the necessary enzyme to break them down. Babies born with this condition appear normal at birth, but develop symptoms such as a long slender build, a dislocated lens in the eye, long thin fingers, osteoporosis, skeletal abnormalities, and a significantly increased risk of thromboembolism and atherosclerosis, which can lead to premature CVD within a few years.

In addition to intellectual disability, mental illness, a little low IQ, behavioral issues, and seizures, artery blockages can induce intellectual disability, mental illness, and seizures. Some of them can be avoided if homocystinuria is diagnosed early, which is why all states screen neonates for the disease.

Lab tests often ordered with a Homocysteine test:

  • Vitamin B12
  • Folate
  • MTHFR Mutation
  • Intrinsic Factor Antibody

Conditions where a Homocysteine test is recommended:

  • Vitamin B12 and Folate Deficiency
  • Heart Attack
  • Heart Disease
  • Stroke

How does my health care provider use a Homocysteine test?

The homocysteine test can be used in a variety of ways, including:

A homocysteine test may be ordered by a doctor to see if a person is deficient in vitamin B12 or folate. Before B12 and folate tests are abnormal, the homocysteine level may be raised. Homocysteine testing may be recommended by some health professionals in malnourished people, the elderly, who absorb less vitamin B12 from their diet, and people who have poor nutrition, such as drug or alcohol addicts.

For those at high risk of a stroke or heart attack, homocysteine testing may be requested as part of a health screening. It could be beneficial for someone who has a family history of coronary artery disease but no other recognized risk factors like smoking, high blood pressure, or obesity. However, because the specific role of homocysteine in the course of cardiovascular disease is unknown, the screening test's efficacy continues to be questioned.

If a health professional believes that an infant or kid has homocystinuria, tests for both urine and blood homocysteine can be utilized to assist diagnose the genetic condition. As part of their newborn screening in the United States, all babies are regularly tested for excess methionine, a symptom of homocystinuria. If a baby's test results are positive, urine and blood homocysteine tests are frequently used to confirm the results.

What do my homocysteine test results mean?

Homocysteine levels may be high in cases of suspected malnutrition, vitamin B12, or folate insufficiency. If a person does not consume enough B vitamins and/or folate through diet or supplements, the body may be unable to convert homocysteine into forms that the body can use. The level of homocysteine in the blood may rise in this scenario.

According to studies conducted in the mid- to late-1990s, those with high homocysteine levels have a substantially higher risk of heart attack or stroke than those with normal levels. The study of the relationship between excessive homocysteine levels and heart disease is still ongoing. However, considering that multiple trials studying folic acid and B vitamin supplementation have found no benefit or reduction in CVD risk, the use of homocysteine levels for risk assessment of cardiovascular disease, peripheral vascular disease, and stroke is now questionable.

A 2012 research study using various datasets, including 50,000 persons with coronary heart disease, called into question the possibility of a cause-and-effect relationship between homocysteine levels and heart disease. Although the American Heart Association recognizes a link between homocysteine levels and heart attack/stroke survival rates, it does not consider high homocysteine to be a major CVD risk factor.

While the AHA does not advocate for widespread use of folic acid and B vitamins to reduce the risk of heart attack and stroke, it does advocate for a balanced, nutritious diet and advises doctors to consider total risk factors as well as nutrition when treating cardiovascular disease.

Significantly elevated homocysteine concentrations in the urine and blood indicate that an infant is likely to have homocystinuria and need additional testing to confirm the reason of the increase.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: The Intrinsic Factor Blocking antibody test is a blood test used to detect antibodies to Intrinsic Factor, a protein complex created by your stomach lining to help your body absorb Vitamin B12.

Also Known As: Intrinsic Factor Antibody test, IF Antibody Test, IF Antibody Type 1 Test, IF Antibody Type 2 Test,

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is an Intrinsic Factor Blocking Antibody test ordered?

It is uncommon to order the intrinsic factor antibody test. When a person has symptoms of pernicious anemia with a vitamin B12 deficiency, such as when they exhibit the following signs and symptoms:

  • Paleness
  • weakness, exhaustion
  • tingling and numbness in the hands and/or feet
  • larger-than-normal red blood cells; occasionally, large RBCs are found before the other symptoms become apparent, for example, during a routine complete blood count test for a health examination.

Testing for vitamin B12, folate, and methylmalonic acid is typically prompted by these findings.

An IF antibody test is often requested when a person's vitamin B12 level is low and their levels of homocysteine and methylmalonic acid are elevated.

What does an Intrinsic Factor Blocking Antibody test check for?

Intrinsic factor antibodies are immune system-produced proteins linked to pernicious anemia. This examination finds blood-circulating intrinsic factor antibodies.

A type of specialized stomach wall cell known as parietal cells produces the protein known as intrinsic factor. Stomach acids release vitamin B12 from food during digestion, and it then binds with intrinsic factor to create a complex. For vitamin B12 to be absorbed in the small intestine, this complex must first form.

Vitamin B12 is crucial for the synthesis of red blood cells in addition to its responsibilities in the brain and nervous system. Vitamin B12 is generally not absorbed if there is insufficient intrinsic factor, which prevents the body from producing enough healthy red blood cells and results in anemia. The amount of neutrophils and platelets may fall in addition to anemia.

Pernicious anemia is anemia brought on by a deficiency of intrinsic factor. This disorder is primarily autoimmune in nature and results from the body's immune system producing antibodies against parietal cells and/or the intrinsic factor. These antibodies have the potential to harm parietal cells, obstruct the generation of intrinsic factor, or stop intrinsic factor from performing its biological role.

The laboratory can check for two different IF antibodies:

The most common test is for intrinsic factor blocking antibody, because it is more specific for pernicious anemia.

Antibody that binds intrinsic factors prevents the absorption of the combination of intrinsic factors and vitamin B12

Lab tests often ordered with an Intrinsic Factor Blocking Antibody test:

  • Vitamin B12
  • Folate
  • Methylmalonic Acid
  • Gastrin
  • Parietal Cell Antibody
  • Homocysteine
  • Complete Blood Count

Conditions where an Intrinsic Factor Blocking Antibody test is recommended:

  • Vitamin B12 and Folate Deficiencies
  • Anemia
  • Autoimmune Disease
  • Neuropathy

How does my health care provider use an Intrinsic Factor Blocking Antibody test?

A vitamin B12 deficiency's underlying cause and the presence of pernicious anemia can both be determined with the use of an intrinsic factor antibody test.

Lack of intrinsic factor results in vitamin B12 insufficiency, which is the cause of pernicious anemia. The primary cause of this illness is when the body's immune system creates antibodies against its own tissues and targets the parietal cells or intrinsic factor. These antibodies have the potential to harm parietal cells, obstruct the generation of intrinsic factor, or stop intrinsic factor from performing its biological role. Vitamin B12 and intrinsic factor combine to generate a compound that facilitates absorption in the small intestine.

In most cases, IF antibody testing is utilized as a follow-up procedure after other laboratory tests, including as a vitamin B12 test, a methylmalonic acid test, and a complete blood count, have determined that a person has a vitamin B12 deficiency with accompanying anemia and/or neuropathy.

It can help establish a diagnosis when combined with a test for antibodies against parietal cells.

There are two IF antibodies that could be examined:

anti-intrinsic factor antibody that prevents vitamin B12 from attaching to intrinsic factor. This is the one that is typically examined since it is more specific for pernicious anemia.

Antibody that binds to or precipitates intrinsic factors and prevents the small intestine from absorbing the intrinsic factor-vitamin B12 combination.

What do my Intrinsic Factor Blocking Antibody test results mean?

When making a diagnosis, the results of other laboratory tests are frequently combined with the results of intrinsic factor antibody tests. It is most likely that someone has pernicious anemia if they have elevated IF antibodies, elevated methylmalonic acid and homocysteine levels, and low vitamin B12 levels.

The absence of pernicious anemia is not always indicated by a negative test result. Up to 50% of persons who are impacted won't have IF antibodies. In the absence of them, the doctor may request a parietal cell antibody test to aid in making the diagnosis. Antibodies against parietal cells are less focused than IF antibodies. About 90% of people with pernicious anemia have them, but they can also be found in a wide range of other diseases and in approximately 10% of the general public.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: Methylmalonic Acid, also known as MMA, is a blood test used to detect Vitamin B12 deficiency early on before an individual becomes deficient or when there is a mild deficiency already present. MMA can also be used to diagnose methylmalonic acidemia in newborns.

Also Known As: MMA Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is a Methylmalonic Acid test ordered?

When a vitamin B12 test result comes back low, an MMA test may be performed, sometimes coupled with a homocysteine test.

Asymptomatic persons with a higher risk of vitamin B12 insufficiency, such as the elderly, or those using certain medicines for a long period, such as Metformin, are also given MMA. If the two tests are not scheduled together, an MMA test may be ordered as a follow-up to an increased homocysteine level.

When a doctor fears that an acutely unwell child has inherited methylmalonic acidemia, MMA testing may be recommended.

What does a Methylmalonic Acid blood test check for?

Methylmalonic acid is a naturally occurring chemical that is required for human metabolism and energy generation. Vitamin B12 aids in the conversion of methylmalonyl CoA to succinyl Coenzyme A in one step of metabolism. If there isn't enough B12, the MMA concentration rises, resulting in an increase in MMA levels in the blood and urine. Methylmalonic acid levels that are high in the blood or urine are a sensitive and early sign of vitamin B12 insufficiency.

Anemia and the formation of big red blood cells can occur as a result of vitamin B12 deficiency over time. It can also induce neuropathy symptoms including numbness and tingling in the hands and feet, as well as mental or behavioral problems like cognitive impairment, disorientation, irritability, and depression in severe cases. Though some patients may have some degree of neuropathy, an increased concentration of MMA may frequently be detected before blood cell alterations and full-blown symptoms appear.

Although the link between MMA and B12 has been recognized for over 40 years, MMA testing is not widely used, and there is no consensus on its clinical relevance. Some doctors believe that MMA is a better indicator of bioavailable B12 than the standard vitamin B12 test since a considerable portion of B12 detected in the blood is bound to proteins and is not biologically active. Others feel that measuring MMA and homocysteine can help detect early and mild B12 insufficiency. Others believe that many moderate deficits diagnosed do not evolve to more serious deficiencies and so do not require identification or treatment.

Methylmalonic acidemia is a rare metabolic condition that affects roughly 1 in 25,000 to 100,000 people. Testing babies for high levels of MMA could help doctors diagnose it. Screening for this disease is required in all 50 states in the United States. This condition prevents babies from converting methylmalonyl Coenzyme A to succinyl Coenzyme A.

Lab tests often ordered with a Methylmalonic Acid test:

  • Vitamin B12
  • Folate
  • Homocysteine
  • Intrinsic Factor Antibody
  • Complete Blood Count (CBC)
  • Reticulocyte Count
  • Parietal Cell Antibody

Conditions where a Methylmalonic Acid test is recommended:

  • Vitamin B12 Deficiency
  • Folate Deficiency
  • Anemia

How does my health care provider use a Methylmalonic Acid test?

The methylmalonic acid test can be used to determine a vitamin B12 deficiency that is mild or early. It can be ordered alone or in conjunction with a homocysteine test as a follow-up to a vitamin B12 test result that falls below the normal range.

MMA is a chemical produced in the body in extremely minute amounts. It is required for metabolism and the creation of energy. Vitamin B12 aids in the conversion of methylmalonyl CoA to succinyl Coenzyme A in one step of metabolism. If there isn't enough B12, the MMA level rises, resulting in an increase in MMA levels in the blood and urine. Methylmalonic acid levels in the blood or urine can be used to detect vitamin B12 insufficiency early.

There are currently no standards for screening asymptomatic adults for vitamin B12 deficiency, however those at high risk without symptoms, such as the elderly or those taking particular drugs for a long time, may require confirmation with MMA and/or homocysteine.

The MMA test is quite sensitive in detecting a B12 deficiency. It is the preferred confirmatory test for a B12 deficiency because it is more specific than homocysteine.

MMA testing may be conducted in some cases to assist detect methylmalonic acidemia, a rare inherited metabolic condition. In all 50 states in the United States, newborn screening programs currently require testing for this disease.

What do my Methylmalonic Acid test results mean?

Early stages of B12 deficiency may be evident if MMA and homocysteine levels are elevated while vitamin B12 levels are mildly diminished. This could indicate a decrease in B12 availability in the tissues.

If only the homocysteine level is high but not the MMA, the person may be deficient in folate. This distinction is critical because treating anemia with folate treats the anemia but not the brain damage, which may be irreparable.

If both MMA and homocysteine levels are within normal limits, a B12 shortage is unlikely.

Infants with the rare hereditary illness methylmalonic acidemia may have moderately to severely high levels of MMA.

Reduced MMA levels are uncommon and are not considered clinically significant.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: Methylmalonic Acid Urine, also known as MMA, is a urine test used to detect Vitamin B12 deficiency early on before an individual becomes deficient or when there is a mild deficiency already present. MMA can also be used to diagnose methylmalonic acidemia in newborns.

Collection Method: Urine Collection

Specimen Type: Urine

Test Preparation: No preparation required

When is a Methylmalonic Acid test ordered?

When a vitamin B12 test result comes back low, an MMA test may be performed, sometimes coupled with a homocysteine test.

Asymptomatic persons with a higher risk of vitamin B12 insufficiency, such as the elderly, or those using certain medicines for a long period, such as Metformin, are also given MMA. If the two tests are not scheduled together, an MMA test may be ordered as a follow-up to an increased homocysteine level.

When a doctor fears that an acutely unwell child has inherited methylmalonic acidemia, MMA testing may be recommended.

What does a Methylmalonic Acid Urine test check for?

Methylmalonic acid is a naturally occurring chemical that is required for human metabolism and energy generation. Vitamin B12 aids in the conversion of methylmalonyl CoA to succinyl Coenzyme A in one step of metabolism. If there isn't enough B12, the MMA concentration rises, resulting in an increase in MMA levels in the blood and urine. Methylmalonic acid levels that are high in the blood or urine are a sensitive and early sign of vitamin B12 insufficiency.

Anemia and the formation of big red blood cells can occur as a result of vitamin B12 deficiency over time. It can also induce neuropathy symptoms including numbness and tingling in the hands and feet, as well as mental or behavioral problems like cognitive impairment, disorientation, irritability, and depression in severe cases. Though some patients may have some degree of neuropathy, an increased concentration of MMA may frequently be detected before blood cell alterations and full-blown symptoms appear.

Although the link between MMA and B12 has been recognized for over 40 years, MMA testing is not widely used, and there is no consensus on its clinical relevance. Some doctors believe that MMA is a better indicator of bioavailable B12 than the standard vitamin B12 test since a considerable portion of B12 detected in the blood is bound to proteins and is not biologically active. Others feel that measuring MMA and homocysteine can help detect early and mild B12 insufficiency. Others believe that many moderate deficits diagnosed do not evolve to more serious deficiencies and so do not require identification or treatment.

Methylmalonic acidemia is a rare metabolic condition that affects roughly 1 in 25,000 to 100,000 people. Testing babies for high levels of MMA could help doctors diagnose it. Screening for this disease is required in all 50 states in the United States. This condition prevents babies from converting methylmalonyl CoA to succinyl CoA. They appear normal at birth, but as they consume protein, symptoms such excessive exhaustion, vomiting, dehydration, weak muscle tone, seizures, mental retardation, strokes, and severe metabolic acidosis emerge.

This test also checks creatinine urine levels.

Creatinine is a waste product created by muscles when a molecule called creatine is broken down. The kidneys eliminate creatinine from the body by filtering almost all of it from the blood and excreting it in the urine. The level of creatinine in the urine is measured in this test.

Creatine is a component of the energy-producing cycle that allows muscles to contract. The body produces both creatine and creatinine at a roughly steady rate. Because the kidneys filter almost all creatinine from the blood and excrete it in the urine, blood levels are usually an excellent predictor of how well the kidneys are operating. The amount produced is determined by the person's size and muscular mass. As a result, men's creatinine levels will be slightly higher than women's and children's.

Lab tests often ordered with a Methylmalonic Acid test:

  • Vitamin B12
  • Folate
  • Homocysteine
  • Intrinsic Factor Antibody
  • Complete Blood Count (CBC)
  • Reticulocyte Count
  • Parietal Cell Antibody

Conditions where a Methylmalonic Acid test is recommended:

  • Vitamin B12 Deficiency
  • Folate Deficiency
  • Anemia

How does my healthcare provider use a Methylmalonic Acid test?

The methylmalonic acid test can be used to determine a vitamin B12 deficiency that is mild or early. It can be ordered alone or in conjunction with a homocysteine test as a follow-up to a vitamin B12 test result that falls below the normal range.

MMA is a chemical produced in the body in extremely minute amounts. It is required for metabolism and the creation of energy. Vitamin B12 aids in the conversion of methylmalonyl CoA to succinyl Coenzyme A in one step of metabolism. If there isn't enough B12, the MMA level rises, resulting in an increase in MMA levels in the blood and urine. Methylmalonic acid levels in the blood or urine can be used to detect vitamin B12 insufficiency early.

There are currently no standards for screening asymptomatic adults for vitamin B12 deficiency, however those at high risk without symptoms, such as the elderly or those taking particular drugs for a long time, may require confirmation with MMA and/or homocysteine.

The MMA test is quite sensitive in detecting a B12 deficiency. It is the preferred confirmatory test for a B12 deficiency because it is more specific than homocysteine.

MMA testing may be conducted in some cases to assist detect methylmalonic acidemia, a rare inherited metabolic condition. In all 50 states in the United States, newborn screening programs currently require testing for this disease.

What do my Methylmalonic Acid test results mean?

Early stages of B12 deficiency may be evident if MMA and homocysteine levels are elevated while vitamin B12 levels are mildly diminished. This could indicate a decrease in B12 availability in the tissues.

If only the homocysteine level is high but not the MMA, the person may be deficient in folate. This distinction is critical because treating anemia with folate treats the anemia but not the brain damage, which may be irreparable.

If both MMA and homocysteine levels are within normal limits, a B12 shortage is unlikely.

Infants with the rare hereditary illness methylmalonic acidemia may have moderately to severely high levels of MMA.

Reduced MMA levels are uncommon and are not considered clinically significant.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: The parietal cell antibody blood test is a test ordered by physicians when they suspect a patient has pernicious anemia or a vitamin B12 deficiency.

Also Known As: Gastric Parietal Cell Antibody Test, Anti-Parietal Cell Antibody Test, Anti-GPA Test, AGPA Test, APCA Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is a Parietal Cell Antibody test ordered?

Because the parietal cell antibody test is less accurate than the intrinsic factor antibody test, it is not usually requested. When a person exhibits symptoms that point to a vitamin B12 deficiency and when pernicious anemia is suspected, it may be prescribed.

Testing for vitamin B12, folate, methylmalonic acid, and homocysteine are frequently prompted by results from parietal cell antibody tests.

When a person has a decreased vitamin B12 level and elevated levels of methylmalonic acid and homocysteine, follow-up tests such as an intrinsic factor antibody test and a parietal cell antibody test may be prescribed.

What does a Parietal Cell Antibody test check for?

Autoantibodies, which are proteins created by the immune system and wrongly target a particular class of specialized cells that line the stomach wall, include parietal cell antibodies. This test finds these antibodies in the blood, which aids in the identification of pernicious anemia.

When the body's immune system attacks its own tissues and produces antibodies against the parietal cells and/or intrinsic factor, pernicious anemia can develop.

Parietal cells are specialized stomach cells that produce intrinsic factor and acid to aid in meal digestion.

Vitamin B12 must have intrinsic factor in order to be absorbed from diet.

Vitamin B12 is released from food during digestion by the stomach acids made by parietal cells, who then combine it with intrinsic factor to form a complex. This complex's production enables vitamin B12 absorption in the small intestine. Vitamin B12 is crucial for the synthesis of red blood cells in addition to its responsibilities in the brain and nervous system.

When the immune system of the body mistakenly attacks its own tissues and produces antibodies against intrinsic factor and/or parietal cells, it can lead to inflammation and gradually harm parietal cells. The generation or operation of intrinsic factor may be interfered with by this autoimmune disease, known as autoimmune atrophic gastritis.

Vitamin B12 is generally not absorbed when there is insufficient intrinsic factor, which results in a vitamin B12 deficit. Megaloblastic anemia, which is characterized by the formation of fewer but larger red blood cells, can be brought on by vitamin B12 deficiency. Additionally, a lack of vitamin B12 can cause signs and symptoms of nerve damage, such as numbness and tingling that first appear in the hands and feet, muscle weakness, sluggish reflexes, loss of balance, and shaky gait. Megaloblastic anemia and vitamin B12 deficiency can be brought on by other conditions. Pernicious anemia is the name for the condition when it results from a deficiency of intrinsic factor. Neutrophils and platelets may be less plentiful, in addition to anemia.

In order to identify pernicious anemia, the tests for parietal cell and/or intrinsic factor antibodies may be combined with a number of other procedures, such as complete blood count and blood smear.

Lab tests often ordered with a Parietal Cell Antibody test:

  • Intrinsic Factor Antibody
  • Vitamin B12 and Folate
  • Methylmalonic Acid
  • Gastrin
  • Homocysteine
  • Complete Blood Count (CBC)

Conditions where a Parietal Cell Antibody test is recommended:

  • Vitamin B12 Deficiency
  • Anemia
  • Autoimmune Disorders
  • Neuropathy

How does my health care provider use a Parietal Cell Antibody test?

To help identify the root cause of a vitamin B12 shortage and to support the diagnosis of pernicious anemia, a parietal cell antibody test may be utilized in conjunction with or after an intrinsic factor antibody test.

It is typically done as a follow-up test after other lab tests, methylmalonic acid, vitamin B12, or a complete blood count with a blood smear examination, identify a person as having a vitamin B12 deficiency and any accompanying megaloblastic anemia and/or neuropathy.

What do my Parietal Cell Antibody test results mean?

When making a diagnosis, the results of this test are frequently compared to those from other laboratory tests.

A person is more likely to have pernicious anemia if they have decreased vitamin B12 levels, elevated levels of methylmalonic acid and homocysteine, and positive test results for intrinsic factor antibodies and/or parietal cell antibodies.

The absence of pernicious anemia is not always indicated by a negative test result. At least 10% of those affected won't have antibodies to parietal cells.

Antibodies against parietal cells are less focused than those against intrinsic factors. Parietal cell antibodies are present in about 90% of people who have pernicious anemia.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Most Popular

Description: Reticulocytes are red blood cells that are not fully developed yet. The reticulocyte test is used to measure the amount of underdeveloped red blood cells.

Also Known As: Retic Count Reticulocyte Percent Test, Reticulocyte Index Test, Corrected Reticulocyte Test, Reticulocyte Production Index Test, RPI Test

Collection Method: Blood Draw

Specimen Type: Whole Blood

Test Preparation: No preparation required

When is a Reticulocyte Count test ordered?

A reticulocyte count may be requested in the following situations:

  • A low RBC count, as well as a low hemoglobin and hematocrit, are found on a complete blood count.
  • A doctor wants to check the function of the bone marrow.
  • Paleness, loss of energy, exhaustion, weakness, shortness of breath, and/or blood in the stool are signs and symptoms of anemia or persistent bleeding.
  • A disorder known to impact RBC production, such as iron deficiency anemia, vitamin B12 or folate deficiency, or renal illness, has been recognized and is being treated.
  • A person is receiving radiation or chemotherapy.
  • A bone marrow transplant has been performed.

When a person has an increased quantity of RBCs and an elevated hemoglobin and hematocrit, a blood test is performed to evaluate the degree and pace of RBC overproduction.

What does a Reticulocyte Count blood test check for?

Reticulocytes are young red blood cells that have just been created. The number and/or percentage of reticulocytes in the blood is determined by a reticulocyte test, which is a reflection of recent bone marrow function or activity.

Red blood cells are made in the bone marrow, where blood-forming stem cells differentiate and grow into reticulocytes, which then mature into mature RBCs. When compared to mature RBCs, reticulocytes have a volume of about 24 percent more. Although adult RBCs do not have a nucleus like most other cells in the body, reticulocytes still contain some genetic material. Reticulocytes lose the last traces of RNA as they mature, and most of them are fully matured within a day of being released from the bone marrow into the bloodstream. The reticulocyte count or percentage is an excellent measure of a person's ability to manufacture enough red blood cells in their bone marrow.

RBCs last around 120 days in circulation, and the bone marrow must constantly manufacture new RBCs to replace those that have aged and degraded or have been lost due to hemorrhage. Normally, a steady number of RBCs is maintained in the blood by replacing deteriorated or lost RBCs on a regular basis.

A range of diseases and conditions, including those that cause severe bleeding, can impair the creation of new RBCs and/or their survival. These situations can cause an increase or decrease in the number of RBCs, as well as a change in the reticulocyte count.

Reticulocyte % higher than normal: Anemia is caused by a lack of RBCs in the blood due to acute or chronic bleeding or enhanced RBC breakdown (hemolysis). The body adjusts for this loss or responds to deficiency anemia treatment by increasing RBC production and releasing RBCs into the bloodstream before they mature. When this happens, the number and percentage of reticulocytes in the blood grows until the bone marrow's production capacity is reached or until a sufficient number of RBCs replaces those that were lost.

A lower-than-normal percentage of reticulocytes: When the bone marrow isn't working properly, RBC production can suffer. A bone marrow condition, such as aplastic anemia, can cause this. Other causes that might cause decreased production include liver cirrhosis, kidney disease, cancer treatments such as radiation or chemotherapy, a low amount of the hormone erythropoietin, or dietary shortages such as iron, vitamin B12, or folate. As old RBCs are eliminated from the blood but not entirely replaced, there are fewer RBCs in circulation, poorer hemoglobin and oxygen-carrying capacity, a lower hematocrit, and a lower number of reticulocytes.

Due to excessive RBC production by the bone marrow, both the reticulocyte and RBC counts might occasionally rise. This could be caused by increased erythropoietin production, diseases that cause chronic RBC overproduction (polycythemia vera), or cigarette smoking.

Some medications can increase or reduce the number of reticulocytes in the body.

Lab tests often ordered with a Reticulocyte Count test:

  • Complete Blood Count (CBC)
  • Red Blood Cell Count
  • Hemoglobin
  • Hematocrit
  • Blood Smear
  • Erythropoietin
  • Vitamin B12
  • Folate
  • Haptoglobin
  • G6PD
  • Iron Total
  • Iron and Total Iron Binding Capacity
  • Ferritin

Conditions where a Reticulocyte Count test is recommended:

  • Anemia
  • Bone Marrow Disorders
  • Myeloproliferative Neoplasms

How does my health care provider use a Reticulocyte Count test?

A reticulocyte test is used to assess the number and/or percentage of reticulocytes in the blood to aid in the diagnosis of red blood cell abnormalities such as anemia and bone marrow illnesses. Reticulocytes are young red blood cells that have just been created. Before being released into the circulation, they develop and mature in the bone marrow.

The reticulocyte test can be used in the following situations:

  • To help determine the reason of aberrant results on a complete blood count, RBC count, hemoglobin, or hematocrit.
  • To see if the bone marrow is appropriately functioning and reacting to the body's need for red blood cells.
  • To aid in the detection and differentiation of various kinds of anemia
  • To track how well people are responding to treatments, such as those for iron deficiency anemia.
  • To track the activity of the bone marrow after therapies like chemotherapy.
  • To keep track of how well you're doing after a bone marrow transplant.

A reticulocyte count is usually done using an automated device and can be done in conjunction with a complete blood count, which includes an RBC count, hemoglobin, and hematocrit. It is possible to report either an absolute number of reticulocytes or a percentage of reticulocytes. The number of reticulocytes is compared to the total number of red blood cells as a percentage:

[ Number of Reticulocytes / Total Red Blood Cells ] X 100 = Reticulocyte Percentage

Several more tests, in addition to a reticulocyte count, can be done to further screen someone for a disorder that affects RBC production. Here are a few examples:

  • Iron testing
  • Haptoglobin
  • G6PD
  • Erythropoietin
  • Vitamin B12 and Folate

Following up on abnormal results from early tests, a bone marrow aspiration and biopsy may be performed. This is an invasive operation that is not performed on everyone. If necessary, it can, however, supply extra information.

What do my reticulocyte count test results mean?

The results must be carefully evaluated in conjunction with the results of other tests, such as a red blood cell count, hemoglobin, hematocrit, or a complete blood count. The reticulocyte count, in general, reflects recent bone marrow activity. The results could reveal whether a disease or condition is present that is causing an elevated need for new RBCs, as well as whether the bone marrow is capable of meeting that demand. Overproduction of RBCs may be detected in some cases.

When anemia is present and the bone marrow responds adequately to the demand for more RBCs, the bone marrow will create more and allow for the early release of more immature RBCs, resulting in an increase in the number of reticulocytes in the blood.

A high reticulocyte count along with low RBCs, hemoglobin, and hematocrit may indicate the following conditions:

  • When a person bleeds, the number of reticulocytes increases after a few days to make up for the loss of red blood cells. If someone has chronic blood loss, the marrow will try to keep up with the need for new RBCs by increasing the number of reticulocytes.
  • Anemia is caused by an increase in the breakdown of RBCs in hemolytic anemia. To compensate, the bone marrow boosts RBC production, resulting in a high reticulocyte count.
  • Hemolytic illness of the newborn: Similar to hemolytic anemia, this syndrome causes an increase in RBC destruction.

For example, a low reticulocyte count with low hemoglobin, low red blood cells, and low hematocrit can be detected when:

  • Anemia due to a lack of iron
  • Folic acid deficiency or pernicious anemia
  • Aplastic anemia is a kind of anemia that occurs when the
  • Radiation therapy is a type of treatment that uses a
  • Infection or malignancy can induce bone marrow failure.
  • A low level of erythropoietin can be caused by severe kidney disease.
  • Alcoholism
  • Endocrine illness

When a person has anemia, the percentage of reticulocytes in their blood may appear to be higher than the total number of RBCs. A calculation known as a corrected reticulocyte count or reticulocyte index may be reported to get a more accurate estimate of bone marrow function. When a person's hematocrit is compared to a normal hematocrit reading, the RI is computed. The reticulocyte production index and an immature reticulocyte fraction are two more estimates that may be presented. The IRF was once known as the reticulocyte maturity index, but it is currently the most widely used phrase to describe the younger percentage of reticulocytes.

The existence of a disease or condition is indicated by the reticulocyte test, however it is not specifically diagnostic of any disease. It's a warning that more research is needed, as well as a method for monitoring therapy effectiveness.

When reticulocyte numbers increase after chemotherapy, a bone marrow transplant, or treatment for an iron, vitamin B12, or folate shortage, bone marrow RBC production is on the mend.

A high reticulocyte count can indicate an overproduction of RBCs in people who do not have anemia or have a high RBC count. This can be caused by a variety of factors, including:

  • Polycythemia vera
  • Excess erythropoietin-producing tumor

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Clinical Significance
Micronutrient, Vitamin C - Vitamin C is an antioxidant involved in connective tissue metabolism, drug-metabolizing systems, and mixed-function oxidase systems to list a few. Vitamin C deficiency causes scurvy; manifestations include impaired formation of mature connective tissue, bleeding into the skin, weakness, fatigue, and depression.

Patients must be 18 years of age or greater.

Patient Preparation
Overnight fasting is preferred. Refrain from eating fruits and from taking vitamin C supplements for 24 hours prior to collection.

Reference Range(s)
Male ≥18 years    0.2-2.1 mg/dL
Female ≥18 years    0.3-2.7 mg/dL
Reference range not available for individuals <18 years for this micronutrient test.


Vitamin C is an antioxidant involved in connective tissue metabolism, drug-metabolizing systems, and mixed-function oxidase systems to list a few. Vitamin C deficiency causes scurvy; manifestations include impaired formation of mature connective tissue, bleeding into the skin, weakness, fatigue, and depression.

Clinical Significance
Micronutrients, B-Vitamin Panel

Patients must be 18 years of age or greater.

Patient Preparation
Overnight fasting is required. Avoid vitamin supplements for 24 hours prior to collection.

Includes
Micronutrient, Folate
Micronutrient, Vitamin B1 (Thiamine)
Micronutrient, Vitamin B2
Micronutrient, Vitamin B3
Micronutrient, Vitamin B5
Micronutrient, Vitamin B6
Micronutrient, Vitamin B12

Reference Range(s)
≥18 years
Folate    >5.4 ng/mL
Vitamin B1 (Thiamine)    78-185 nmol/L
Vitamin B2    6.2-39.0 nmol/L
Vitamin B3    ≤110 ng/mL
Vitamin B5    <275 ng/mL
Vitamin B6    2.1-21.7 ng/mL
Vitamin B12    200-1100 ng/mL
Reference range not available for individuals <18 years for this micronutrient test.



9 Blood Tests to Help Identify Vitamin B12 and Folate Deficiency

Are you feeling tired, sluggish, or irritable? Have you noticed changes in your digestion? You could be dealing with a vitamin deficiency. 

The majority of people in the United States consume adequate levels of B12 and folate. However, it's estimated that three percent of men and eight percent of women are deficient. 

A vitamin deficiency can come with a number of consequences. It's important to keep an eye on odd symptoms you're experiencing in case you could be a part of the three or eight percent.

If you're looking for a vitamin B12 deficiency test, you'll benefit from having some background information on the deficiency, its symptoms, treatments, etc. So keep reading to learn more. 

What Are Vitamin B12 and Folate?

Along with folate and vitamin C, vitamin B12, also called cobalamin, helps the body make new proteins. The proteins make red and white blood cells, repair cells, and synthesize DNA.

Vitamin B12 is not naturally produced in the body. Therefore, a person needs to get the right amount from their diet. Red meat, fish, poultry, milk, yogurt, and eggs contain cobalamin.

Folate is also a vitamin the body does not make naturally. It's especially important during pregnancy for cell division. It's commonly found in leafy green vegetables, peas and dry beans, liver, yeast, and citrus fruits. 

So, what causes vitamin B12 deficiency? When someone is dealing with a vitamin B12 deficiency, it's most often because they're not getting enough through their diet or supplements.

When it comes to dietary deficiencies, vegans are the most likely to suffer because of the lack of animal products. However, dietary deficiencies are not the only reason people may develop a B12 deficiency. 

Two other reasons someone may be suffering from vitamin B12 deficiency symptoms are inadequate absorption and increased need. If the vitamin B12 absorption process stops, that can cause the body to absorb less than what it needs. In regard to increased need, some diseases and conditions, like pregnancy or cancer, can boost the need for B12. 

Signs and Symptoms of Vitamin B12 and Folate Deficiency 

In some cases, a mild vitamin B12 and folate deficiency causes no symptoms. Minor changes in diet could fix the issue because a person even realizes something is off. As the deficiency worsens, however, the signs and symptoms become significantly more noticeable. 

Some of the most common signs and symptoms of a vitamin B12 deficiency include the following: 

  • Diarrhea
  • Constipation 
  • Dizziness 
  • Fatigue 
  • Muscle weakness 
  • Loss of appetite 
  • Pale skin 
  • Rapid heart rate
  • Irregular heartbeats 
  • Shortness of breath 
  • Sore or smooth tongue and month 
  • Tingling, numbness, and/or burning in the feet, hands, arms, and legs 
  • Paranoia 
  • Irritability 
  • Vision loss 
  • Weight loss 
  • Unsteady movements 
  • Mental confusion 

If you notice signs of a vitamin B12 deficiency, it's important to learn about the blood tests that can confirm or deny your suspected problem. While you may think you need to head to the doctor to get that done, you have online testing options from Ulta Lab Tests to make the process easier.

Consequences of an Untreated Vitamin B12 Deficiency

If a vitamin B12 deficiency goes untreated, there are several potential consequences. The most common is anemia. When your body doesn't make enough red blood cells, you won't have enough oxygen to your tissues and organs. Untreated anemia can result in heart failure. 

Anemia can also cause nerve problems. This is because B12 helps your body produce myelin. Myelin is essentially a protective layer throughout your nervous system. When those layers break down, nerve fibers can get damaged, which can cause numbness. Left untreated, paralysis is possible. 

A vitamin B12 deficiency can also cause mental health issues like depression, anxiety, insomnia, confusion, and visual or audio hallucinations. In extreme cases, patients can experience extrapyramidal symptoms where the body moves uncontrollably. 

Some doctors and scientists believe there is also a connection between B12 deficiencies and brain issues like dementia and Alzheimer's disease. The brain naturally shrinks with age, but depleted B12 can speed up the process by increasing the level of amino acids in the brain. 

Unfortunately, that's not where the consequences stop. Some rarer conditions related to B12 and folate deficiency include infertility, osteoporosis, COPD, and infertility. 

Blood Tests for Vitamin B12 and Folate Deficiency 

If it's suspected you have a vitamin B12 deficiency, there are a number of blood tests that can confirm or deny the suspicion. Folate is typically tested simultaneously, as the signs and symptoms of both deficiencies are similar. 

Does vitamin B12 deficiency show in blood tests? The short answer is yes. There are, however, a number of tests that can be used. Let's take a look at the nine types of blood tests used to diagnose vitamin B12 and folate deficiencies. 

1) Vitamin B12

vitamin B12 test is used to diagnose conditions like anemia and other autoimmune diseases. In addition, in the elderly, the test can help determine the cause of an altered mental state. If a person suffers from a B12 deficiency, their doctor will likely order the test over time to see if the established treatment is effective. 

2) Folate 

While folate is a separate blood test, it is often used together with B12. In addition to detecting illnesses, testing folate levels can provide a general overview of a person's health and nutritional status. 

3) CBC

A CBC, also known as a complete blood count, is used to screen for many conditions and diseases that affect blood cells. The test evaluates red blood cells, white blood cells, and platelets. 

Red blood cells contain hemoglobin, which is the protein that transports oxygen throughout the body. While most red blood cells last 120 days, medical conditions can change that. When a person has vitamin B12 and folate deficiencies, their red blood cells appear abnormal in size and shape.

White blood cells are a crucial part of the body's immune system. So if the body is fighting an infection or inflammation, the numbers will come back abnormal. 

Platelets are cell fragments that assist with clotting. People who have diseases that cause low platelets are at risk of excessive bleeding and bruising. 

4) B Vitamins 

B vitamins are required for metabolism and energy. They're also needed for cell, skin, bone, muscle, organ, and nervous system health. B vitamins are water-soluble, which means you have to eat foods rich in B vitamins to meet your body's needs. 

When you get tested for B vitamins, your doctor will review your levels for thiamine (B1), riboflavin (B2), niacin (B3), pantothenic acid (B5), pyridoxal phosphate (B6), biotin (B7), folate (B9), and cobalamin (B12). 

In regard to test results, low levels could indicate a B vitamin deficiency, and high levels can be associated with vitamin toxicity. 

5) Methylmalonic Acid

Testing methylmalonic acid can detect early or mild vitamin B12 deficiency. The acid is needed for metabolism and energy production. As methylmalonic acid rises in your blood, vitamin B12 levels decrease. 

While the body has measures to level the two out, someone with malabsorption issues could experience numbness, swelling, and jaundice. 

6) Homocysteine

Homocysteine is an amino acid. It is present in all cells of the body and is quickly converted into other products. Vitamin B12 and folate, along with B6, are needed to metabolize homocysteine. 

If a blood test reveals homocysteine levels are elevated, the patient could have a B12 deficiency. Additional testing will be needed to get to the root of the problem. 

Higher levels of homocysteine can also indicate a higher risk for stroke, atherosclerosis, coronary heart disease, or peripheral vascular disease. 

7) Intrinsic Factor Antibody 

Intrinsic factor antibodies are proteins made by the immune system. The protein is produced by specialized cells in the lining of the stomach wall. 

During digestion, stomach accidents release vitamin B12 and bind to intrinsic factor antibodies. With an intrinsic factor, vitamin B 12 goes unabsorbed, and a person can develop anemia. 

8) Parietal Cell Antibody 

Parietal cell antibodies are proteins produced by the immune system. The antibodies mistakenly target cells that line the stomach wall. 

You could have this test completed if you or your doctor believes you have pernicious anemia. Pernicious anemia is an autoimmune disease that flares when the body's immune system targets its own tissues. 

9) Gastrin 

Gastrin, produced by the G-cells, is a hormone that's part of the stomach's antrum. This blood test is usually used to evaluate recurrent peptic ulcers and other types of severe abdominal pain or symptoms. 

While this test isn't directly used to diagnose a vitamin B12 deficiency, its results can help you decide your next step. 

gastrin test is commonly used when a patient suffers from diarrhea, abdominal pain, peptic ulcers, and fatigue. 

While most vitamin B12 and folate deficiencies can be identified with tests at the top of the list, you may need additional testing if your results are unclear. 

With the number of tests Ulta Lab Tests offers, you'll be on track to understanding your body's needs in no time. Test results come as quickly as one to two days, so you won't have to wait weeks to find out if you have a deficiency that needs to be addressed. 

Understanding the Results of a Vitamin B12 Deficiency Test 

If your test results confirm you have a vitamin B12 deficiency, you may need to undergo additional testing to reach a diagnosis. 

It's important to note that dietary deficiency of B12 or folate is uncommon in the United States. This is because many foods are fortified with vitamins. 

In some instances, you could have a deficiency because of certain medications. If your test results indicate that, you can talk with your doctor about finding a new treatment method or adding supplements to your diet. 

Treating a Vitamin B12 Deficiency 

In most instances, treating vitamin deficiencies involves changes in diet and adding supplements. 

For a folate deficiency, folic acid supplements are often suggested. However, once the body's folate level is where it needs to be, which can be confirmed with follow-up blood tests, you'll likely be able to stop taking the supplements. 

With a B-12 deficiency, patients usually start with oral supplements, but that's not always enough. If blood tests do not show any improvements with traditional supplements, B12 injections are an option. 

But how long does it take to recover from B12 deficiency? That answer depends on how well you follow your treatment plan and how your body responds. 

If blood tests confirm you have a vitamin B12 and folate deficiency, you'll want to consider asking your doctor questions about your condition and treatment options. Some of the most common questions, and their answers, patients ask include the following: 

Is vitamin B12 deficiency dangerous?

If left untreated, a B12 deficiency can cause serious complications. 

Does vitamin B12 deficiency cause memory loss?

Yes, vitamin B12 deficiency can cause memory loss. 

Can vitamin B12 deficiency cause muscle pain?

Yes, vitamin B12 deficiency can cause muscle pain. 

Can vitamin B12 deficiency cause lightheadedness?

Yes, vitamin B12 deficiency can cause lightheadedness, particularly when a person stands up too quickly. 

Can vitamin B12 deficiency cause insomnia?

Insomnia and fatigue are the most common and debilitating symptoms related to vitamin B12 deficiency. 

Can vitamin B12 deficiency cause fever?

A severe vitamin B12 deficiency can cause a fever. 

Can vitamin B12 deficiency cause dizziness?

Frequent dizziness and vertigo can indicate a vitamin B12 deficiency. 

Cause vitamin B12 deficiency cause diabetes?

No, but diabetes can increase your risk of having a B12 deficiency. 

Can rheumatoid arthritis cause vitamin B12 deficiency? 

Not necessarily, but a portion of patients with RA do have vitamin B12 deficiency. 

Once you have a handle on your vitamin deficiency, you'll be able to get back to living a high-quality life. 

Order Lab Tests Online

For many patients, driving to a hospital or medical facility for bloodwork can be time-consuming and costly. Fortunately, Ulta Lab Tests offers vitamin B12 deficiency test options. 

When you order lab work from Ulta Lab Tests, your results are kept secure and confidential. And you won't have to worry about getting a referral from your doctor, either. We also offer the lowest prices on lab tests, so health insurance isn't a problem if you're not covered. 

If you're ready to take control of your health, contact us today.