Chronic Fatigue Syndrome

Chronic Fatigue Syndrome Testing and health information

Extreme fatigue that is ongoing and cannot be explained by a medical condition or has no other scientifically proven cause is called Chronic Fatigue Syndrome or CFS. Chronic Fatigue Syndrome can be detrimental to a person’s ability to perform and complete even the most basic daily or routine tasks and activities.

As there is currently no definitive test to diagnose CFS, laboratory testing is used to eliminate and provide treatment options for health conditions or disorders with similar symptoms. The CDC provides guidelines for the basic tests that should be performed, but these could be dependent on other symptoms as well as the health care practitioner managing the case.

Laboratory Tests For Exclusion Purposes

A Comprehensive Metabolic Panel (CMP) includes a variety of different tests to determine the health of organs and identify a range of health conditions such as kidney and liver disease.

A Complete Blood Count (CBC) evaluates blood disorders specifically to look for infection or anemia and other conditions.

C-reactive Protein or Erythrocyte Sedimentation rate, which acts as indicators of nonspecific inflammation in the body.

Thyroid Stimulating Hormone (TSH), including other types of thyroid testing for hypothyroidism.

Iron Studies to detect anemia or an iron deficiency.

Urinalysis to identify infections or other conditions.

Any additional tests that a medical practitioner deems necessary in identifying diseases or health conditions or excluding them as causes of the symptoms of CFS. These additional tests may include:

Antinuclear Bodies (ANA) to identify autoimmune disorders.

Lyme disease tests if the disease is suspected, and the geographical area gives cause for testing.

Rheumatoid Factor to detect Rheumatoid Arthritis.

HIV Antibody Test to identify or eliminate an HIV infection.

Cortisol Testining to identify low concentrations of cortisol as well as adrenal gland function.

SEE BELOW THE LIST OF TESTS FOR MORE INFORMATION ABOUT Chronic Fatigue Syndrome


Name Matches


Important: This panel contains ANA Screen IFA with Reflex to Titer and Pattern #249 which is a Reflex test. If ANA Screen, IFA is positive, then ANA Titer and Pattern will be performed at an additional charge of $13.00


Important: This panel contains ANA Screen IFA with Reflex to Titer and Pattern #249 which is a Reflex test. If ANA Screen, IFA is positive, then ANA Titer and Pattern will be performed at an additional charge of $13.00


This panel contains Cortisol, A.M. #4212, which requires the patient to have their specimen collected between 7 a.m. - 9 a.m.

Important: This panel contains ANA Screen IFA with Reflex to Titer and Pattern #249 which is a Reflex test. If ANA Screen, IFA is positive, then ANA Titer and Pattern will be performed at an additional charge of $13.00


Serum albumin measurements are used in the monitoring and treatment of numerous diseases involving those related to nutrition and pathology particularly in the liver and kidney. Serum albumin is valuable when following response to therapy where improvement in the serum albumin level is the best sign of successful medical treatment. There may be a loss of albumin in the gastrointestinal tract, in the urine secondary to renal damage or direct loss of albumin through the skin. More than 50% of patients with gluten enteropathy have depressed albumin. The only cause of increased albumin is dehydration; there is no naturally occurring hyperalbuminemia

Serum alkaline phosphatase levels are of interest in the diagnosis of hepatobiliary disorders and bone disease associated with increased osteoblastic activity. Moderate elevations of alkaline phosphatase may be seen in several conditions that do not involve the liver or bone. Among these are Hodgkin's disease, congestive heart failure, ulcerative colitis, regional enteritis, and intra-abdominal bacterial infections. Elevations are also observed during the third trimester of pregnancy.

Description: An ALT test is a blood test that is used to screen for and diagnose liver disease.

Also Known As: Alanine Aminotransferase Test, Alanine Transaminase Test, GPT Test, SGPT Test, Serum Glutamic Pyruvic Transaminase Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is an Alanine Transaminase test ordered?

When a person undergoes a standard health examination, ALT may be ordered as part of a full metabolic panel.

When a person has signs and symptoms of a liver problem, a healthcare provider will usually prescribe an ALT test.

Because many people with minor liver damage have no signs or symptoms, ALT may be ordered alone or in combination with other tests for persons who are at an elevated risk for liver disease. With modest liver injury, ALT levels will rise even if there are no other symptoms.

ALT may be ordered on a frequent basis during the course of treatment to establish whether the medication is effective when it is used to monitor the treatment of persons with liver disease.

What does an Alanine Transaminase blood test check for?

Alanine aminotransferase is an enzyme found mostly in liver and kidney cells. It's also found in much lesser concentrations in the heart and muscles. This test determines the amount of ALT in your blood.

The enzyme ALT converts alanine, a protein amino acid, into pyruvate, an important intermediary in cellular energy production. ALT levels in the blood are low in healthy people. ALT is released into the bloodstream when the liver is injured, frequently before more evident indications of liver injury, such as jaundice, appear. As a result, ALT is a useful test for detecting liver disease early on.

The liver is a critical organ positioned directly behind the rib cage on the upper right side of the abdomen. It is engaged in a variety of vital bodily functions. The liver aids in the digestion of nutrients, creates bile to aid in fat digestion, produces a variety of essential proteins such as blood clotting factors and albumin, and breaks down potentially hazardous compounds into safe substances that the body may utilize or discard.

Damage to liver cells can be caused by a variety of factors, resulting in an elevation in ALT. The test is most useful for detecting damage caused by hepatitis or medications or other toxins that are harmful to the liver.

As part of a liver panel, ALT is frequently tested alongside aspartate aminotransferase, another liver enzyme. When the liver is injured, both ALT and AST levels rise, albeit ALT is more specific for the liver and may be the only one to rise in some circumstances. An AST/ALT ratio can be used to help distinguish between different types of liver injury and their severity, as well as to distinguish liver injury from heart or muscle damage.

Lab tests often ordered with an Alanine Transaminase test:

  • AST
  • ALP
  • GGT
  • Bilirubin
  • Liver Panel
  • Comprehensive Metabolic Panel
  • Albumin
  • Total Protein
  • Prothrombin Time
  • Hepatitis Panel General

Conditions where a an Alanine Transaminase test is recommended:

  • Liver Disease
  • Hepatitis
  • Jaundice
  • Cirrhosis
  • Alcoholism
  • Wilson Disease
  • Hemochromatosis

How does my health care provider use an Alanine Transaminase test?

The alanine aminotransferase test is commonly used to diagnose liver damage. It's frequently ordered as part of a liver panel or complete metabolic panel with aspartate aminotransferase to screen for and/or diagnose liver disease.

ALT is an enzyme found mostly in liver and kidney cells. ALT is released into the bloodstream when the liver is injured. As a result, ALT is a useful test for detecting liver disease early on.

Although ALT is more specific to the liver than AST, they are both considered to be two of the most significant tests for detecting liver impairment. When AST is directly compared to ALT, an AST/ALT ratio is calculated. This ratio can assist distinguish between different types of liver disease and identify cardiac or muscle harm.

To assess which type of liver illness is present, ALT values are frequently matched to the results of other tests such as alkaline phosphatase, total protein, and bilirubin.

ALT is frequently requested to monitor the therapy of people with liver disease to evaluate if it is effective, and it can be ordered alone or in combination with other tests.

What do my ALT test results mean?

A low ALT level in the blood is normal and anticipated. The most prevalent cause of ALT levels that are higher than normal is liver disease.

Acute hepatitis and viral infections are the most common causes of very elevated ALT values. ALT levels are normally elevated for 1-2 months after acute hepatitis, but they might take up to 3-6 months to return to normal. ALT levels may also be significantly raised as a result of exposure to liver-toxic medications or other chemicals, or in situations that produce reduced blood flow (ischemia) to the liver.

In chronic hepatitis, ALT levels are frequently less than four times normal. Because ALT levels in this scenario regularly fluctuate between normal and slightly elevated, the test may be ordered frequently to observe if a trend emerges. Other reasons of mild ALT elevations include bile duct obstruction, cirrhosis, heart damage, alcohol addiction, and liver cancers.

ALT is frequently used in conjunction with an AST test or as part of a liver panel. See the Liver Panel article for more information on ALT values in relation to other liver tests.

The ALT level is usually greater than the AST level in most forms of liver disorders, and the AST/ALT ratio is low. There are a few exceptions: in alcoholic hepatitis, cirrhosis, and heart or muscle injury, the AST/ALT ratio is frequently more than 1, and it may be greater than 1 for a day or two after the onset of acute hepatitis.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: An antinuclear antibody screening is a blood test that is going to look for a positive or negative result. If the result comes back as positive further test will be done to look for ANA Titer and Pattern. Antinuclear antibodies are associated with Lupus.

Also Known As: ANA Test, ANA Screen IFA with Reflex to Titer and pattern IFA Test, ANA with Reflex Test, Antinuclear Antibody Screen Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

IMPORTANT Reflex Information: If ANA Screen, IFA is positive, then ANA Titer and Pattern will be performed at an additional charge of $13.00

When is an ANA Screen test ordered?

When someone exhibits signs and symptoms of a systemic autoimmune illness, the ANA test is requested. Symptoms of autoimmune illnesses can be vague and non-specific, and they can fluctuate over time, steadily deteriorate, or oscillate between periods of flare-ups and remissions.

What does an ANA Screen blood test check for?

Antinuclear antibodies are a type of antibody produced by the immune system when it is unable to differentiate between its own cells and foreign cells. Autoantibodies are antibodies that attack the body's own healthy cells, causing symptoms like tissue and organ inflammation, joint and muscle discomfort, and weariness. The moniker "antinuclear" comes from the fact that ANA specifically targets chemicals located in a cell's nucleus. The presence of these autoantibodies in the blood is detected by the ANA test.

The presence of ANA may be a sign of an autoimmune process, and it has been linked to a variety of autoimmune illnesses, the most common of which being systemic lupus erythematosus.

One of the most common tests used to detect an autoimmune disorder or rule out other conditions with comparable signs and symptoms is the ANA test. As a result, it's frequently followed by other autoantibody tests that can help establish a diagnosis. An ENA panel, anti-dsDNA, anti-centromere, and/or anti-histone test are examples of these.

Lab tests often ordered with an ANA Screen test:

  • ENA Panel
  • Sed Rate (ESR)
  • C-Reactive Protein
  • Complement
  • AMA
  • Centromere antibody
  • Histone Antibody

Conditions where an ANA Screen test is recommended:

  • Autoimmune Disorders
  • Lupus
  • Rheumatoid Arthritis
  • Sjogren Syndrome
  • Scleroderma

How does my health care provider use an ANA Screen test?

One of the most often performed tests to diagnose systemic lupus erythematosus is the antinuclear antibody test. It serves as the first step in the evaluation process for autoimmune diseases that might impact various body tissues and organs.

When a person's immune system fails to discriminate between their own cells and foreign cells, autoantibodies called ANA are created. They attack chemicals found in a cell's nucleus, causing organ and tissue damage.

ANA testing may be utilized in conjunction with or after other autoantibody tests, depending on a person's indications and symptoms and the suspected condition. Antibodies that target specific compounds within cell nuclei, such as anti-dsDNA, anti-centromere, anti-nucleolar, anti-histone, and anti-RNA antibodies, are detected by some of these tests, which are considered subsets of the general ANA test. In addition, an ENA panel can be utilized as a follow-up to an ANA.

These further tests are performed in addition to a person's clinical history to assist diagnose or rule out other autoimmune conditions such Sjögren syndrome, polymyositis, and scleroderma.

To detect ANA, various laboratories may employ different test procedures. Immunoassay and indirect fluorescent antibody are two typical approaches. The IFA is regarded as the gold standard. Some labs will test for ANA using immunoassay and then employ IFA to confirm positive or equivocal results.

An indirect fluorescent antibody is created by mixing a person's blood sample with cells attached to a slide. Autoantibodies in the blood bind to the cells and cause them to react. A fluorescent antibody reagent is used to treat the slide, which is then inspected under a microscope. The existence of fluorescence is observed, as well as the pattern of fluorescence.

Immunoassays—these procedures are frequently carried out using automated equipment, however they are less sensitive than IFA in identifying ANA.

Other laboratory tests linked to inflammation, such as the erythrocyte sedimentation rate and/or C-reactive protein, can be used to assess a person's risk of SLE or another autoimmune disease.

What do my ANA test results mean?

A positive ANA test indicates the presence of autoantibodies. This shows the presence of an autoimmune disease in someone who has signs and symptoms, but more testing is needed to make a definitive diagnosis.

Because ANA test results can be positive in persons who have no known autoimmune disease, they must be carefully assessed in conjunction with a person's indications and symptoms.

Because an ANA test can become positive before signs and symptoms of an autoimmune disease appear, determining the meaning of a positive ANA in a person who has no symptoms can take some time.

SLE is unlikely to be diagnosed with a negative ANA result. It is normally not required to repeat a negative ANA test right away; however, because autoimmune illnesses are episodic, it may be desirable to repeat the ANA test at a later date if symptoms persist.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


AST is widely distributed throughout the tissues with significant amounts being in the heart and liver. Lesser amounts are found in skeletal muscles, kidneys, pancreas, spleen, lungs, and brain. Injury to these tissues results in the release of the AST enzyme to general circulation. In myocardial infarction, serum AST may begin to rise within 6-8 hours after onset, peak within two days and return to normal by the fourth or fifth day post infarction. An increase in serum AST is also found with hepatitis, liver necrosis, cirrhosis, and liver metastasis.

Most Popular
Measurement of the levels of bilirubin is used in the diagnosis and treatment of liver, hemolytic, hematologic, and metabolic disorders, including hepatitis and gall bladder obstruction. The assessment of direct bilirubin is helpful in the differentiation of hepatic disorders. The increase in total bilirubin associated with obstructive jaundice is primarily due to the direct (conjugated) fraction. Both direct and indirect bilirubin are increased in the serum with hepatitis.

Description: Bilirubin Fractionated is a blood test that is used to screen for or monitor liver disorders, hemolytic anemia, and neonatal jaundice.

Also Known As: Total Bilirubin Test, TBIL Test, Neonatal Bilirubin Test, Direct Bilirubin Test, Conjugated Bilirubin Test, Indirect Bilirubin Test, Unconjugated Bilirubin Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is a Bilirubin, Fractionated test ordered?

When someone shows evidence of abnormal liver function, a doctor will usually request a bilirubin test along with other laboratory tests. A bilirubin test may be ordered when a patient:

  • Evidence of jaundice is visible.
  • Has a history of excessive alcohol consumption
  • Has a possible drug toxicity
  • Has been exposed to viruses that cause hepatitis

Other signs and symptoms to look out for include:

  • Urine with a dark amber tint.
  • Nausea/vomiting
  • Swelling and/or pain in the abdomen
  • Fatigue and malaise which are common symptoms of chronic liver disease.

In babies with jaundice, measuring and monitoring bilirubin is considered routine medical therapy.

When someone is suspected of hemolytic anemia as a cause of anemia, bilirubin tests may be ordered. In this instance, it's frequently ordered in conjunction with other hemolysis-related tests such a complete blood count, reticulocyte count, haptoglobin, and LDH.

What does a Bilirubin, Fractionated blood test check for?

Bilirubin is an orange-yellow pigment that is largely formed as a byproduct of heme degradation. Heme is a component of hemoglobin, a red blood cell protein. Bilirubin is eventually digested by the liver, which allows it to be excreted from the body. This test assesses a person's liver function or aids in the diagnosis of anemias caused by RBC destruction by measuring the quantity of bilirubin in their blood.

After roughly 120 days in circulation, RBCs generally disintegrate. Heme is transformed to bilirubin as it is released from hemoglobin. Unconjugated bilirubin is another name for this type of bilirubin. Proteins transport unconjugated bilirubin to the liver, where sugars are linked to bilirubin to produce conjugated bilirubin. Conjugated bilirubin enters the bile and travels from the liver to the small intestines, where bacteria break it down further before it is excreted in the stool. As a result, bilirubin breakdown products give stool its distinctive brown hue.

A normal, healthy human produces a tiny quantity of bilirubin each day. The majority of bilirubin comes from damaged or degraded RBCs, with the rest coming from bone marrow or the liver. Small amounts of unconjugated bilirubin are normally discharged into the bloodstream, but there is almost no conjugated bilirubin. Laboratory tests can measure or estimate both types, and a total bilirubin result can be presented as well.

A person may appear jaundiced, with yellowing of the skin and/or whites of the eyes, if the bilirubin level in their blood rises. The pattern of bilirubin test results can provide information to the health care provider about the ailment that may be present. When there is an exceptional quantity of RBC destruction or when the liver is unable to handle bilirubin, unconjugated bilirubin levels may rise. Conversely, conjugated bilirubin levels can rise when the liver can process bilirubin but not transmit the conjugated bilirubin to the bile for elimination; this is most commonly caused by acute hepatitis or bile duct blockage.

In the first few days after birth, increased total and unconjugated bilirubin levels are fairly common in infants. This condition is known as "physiologic jaundice of the newborn," and it develops when the liver of a newborn is not yet mature enough to handle bilirubin. Physiologic jaundice in newborns usually goes away after a few days. RBCs may be damaged in newborn hemolytic illness due to blood incompatibility between the infant and the mother; in these circumstances, treatment may be necessary since large amounts of unconjugated bilirubin might harm the newborn's brain.

Increased total and conjugated bilirubin levels in infants can be caused by biliary atresia, an uncommon but life-threatening congenital disease. To avoid catastrophic liver damage that may necessitate liver transplantation during the first few years of life, this problem must be rapidly recognized and treated, usually with surgery. Despite early surgical therapy, some children may require liver transplants.

Lab tests often ordered with a Bilirubin, Fractionated test:

  • CMP
  • ALT
  • ALP
  • AST
  • Hepatitis A
  • Hepatitis B
  • Hepatitis C
  • Complete Blood Count (CBC)
  • Urinalysis
  • GGT
  • Reticulocyte Count

Conditions where a Bilirubin, Fractionated test is recommended:

  • Jaundice
  • Liver Disease
  • Hepatitis
  • Alcoholism
  • Hemolytic Anemia

Commonly Asked Questions:

How does my health care provider use a Bilirubin, Fractionated test?

A bilirubin test is used to detect an abnormally high quantity of the substance in the blood. It can be used to figure out what's causing your jaundice and/or diagnose illnesses like liver disease, hemolytic anemia, and bile duct blockage.

Bilirubin is an orange-yellow pigment that is largely formed as a byproduct of heme degradation. Heme is a component of hemoglobin, a red blood cell protein. Bilirubin is eventually digested by the liver, which allows it to be excreted from the body. An increased blood level can be caused by any disorder that speeds up the breakdown of RBCs or impairs the processing and elimination of bilirubin.

Laboratory testing can measure or estimate two types of bilirubin:

Unconjugated bilirubin—unconjugated bilirubin is formed when heme is released from hemoglobin. Proteins transport it to the liver. Small levels of the substance may be found in the blood.

Sugars are attached to bilirubin in the liver, resulting in conjugated bilirubin. It enters the bile and travels from the liver to the small intestines before being excreted in the feces. In normal circumstances, there is no conjugated bilirubin in the blood.

A chemical test is usually done to determine the total bilirubin level first. If the total bilirubin level rises, a second chemical test can be used to detect water-soluble forms of bilirubin, known as "direct" bilirubin. The amount of conjugated bilirubin present can be estimated using the direct bilirubin test. The "indirect" amount of unconjugated bilirubin can be estimated by subtracting the direct bilirubin level from the total bilirubin level. The pattern of bilirubin test results can provide information to the healthcare professional about the ailment that may be present.

Bilirubin is measured in adults and older children to:

  • Diagnose and/or monitor liver and bile duct disorders.
  • Evaluate patients with hemolytic anemia
  • Distinguish between the causes of jaundice in babies.

Only unconjugated bilirubin is raised in both physiologic jaundice and hemolytic illness of the infant.

Damage to the newborn's liver from neonatal hepatitis and biliary atresia will also raise conjugated bilirubin concentrations, which is generally the first indication that one of these less common disorders is present.

Because excessive unconjugated bilirubin harms growing brain cells, it is critical to detect and treat an increased amount of bilirubin in a newborn. Mental retardation, learning and developmental impairments, hearing loss, eye movement disorders, and mortality are all possible outcomes of this damage.

What do my bilirubin test results mean?

In adults and children, increased total bilirubin, primarily unconjugated bilirubin, could be caused by:

  • Hemolytic or pernicious anemia are two types of anemia.
  • Reaction to a transfusion
  • Cirrhosis
  • Gilbert syndrome

When conjugated bilirubin levels are higher than unconjugated bilirubin levels, there is usually a problem with bilirubin removal by the liver cells. This can be caused by a variety of factors, including:

  • Hepatitis caused by a virus
  • Reactions to drugs
  • Alcoholic hepatitis

When the bile ducts are blocked, conjugated bilirubin is raised more than unconjugated bilirubin. This can happen, for example, when:

  • In the bile ducts, there are gallstones.
  • Damaging of the bile ducts due to tumors

Increased bilirubin levels can also be caused by rare hereditary illnesses that involve aberrant bilirubin metabolism, such as Rotor, Dubin-Johnson, and Crigler-Najjar syndromes.

Low bilirubin levels are usually not a cause for worry and are not monitored.

A newborn's high bilirubin level may be transient and diminish within a few days to two weeks. However, if the bilirubin level exceeds a crucial threshold or rises rapidly, the cause must be investigated so that appropriate treatment can be started. Increased bilirubin levels can be caused by the rapid breakdown of red blood cells as a result of:

  • Incompatibility of the mother's blood type with that of her child
  • Infections that are present at birth
  • oxygen deficiency
  • Liver disease

Only unconjugated bilirubin is elevated in most of these disorders. In the rare disorders of biliary atresia and newborn hepatitis, increased conjugated bilirubin is found. To avoid liver damage, biliary atresia necessitates surgical surgery.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Measurement of the levels of bilirubin is used in the diagnosis and treatment of liver, hemolytic, hematologic, and metabolic disorders, including hepatitis and gallbladder obstructive disease.

The BUN/Creatinine ratio is useful in the differential diagnosis of acute or chronic renal disease. Reduced renal perfusion, e.g., congestive heart failure, or recent onset of urinary tract obstruction will result in an increase in BUN/Creatinine ratio. Increased urea formation also results in an increase in the ratio, e.g., gastrointestinal bleeding, trauma, etc. When there is decreased formation of urea as seen in liver disease, there is a decrease in the BUN/Creatinine ratio. In most cases of chronic renal disease the ratio remains relatively normal.

Description: The CRP test is used to identify and/or monitor inflammation in patients.

Also Known As: CRP Test, Inflammation test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is a C-Reactive Protein test ordered?

When a person's medical history and signs and symptoms indicate that they may have a significant bacterial infection, a CRP test may be recommended. When a newborn displays signs of infection or when a person has sepsis symptoms including fever, chills, and rapid breathing and heart rate, it may be ordered.

It's also commonly requested on a regular basis to check illnesses like rheumatoid arthritis and lupus, and it's routinely repeated to see if medication is working. This is especially effective for inflammation issues because CRP levels decrease as inflammation decreases.

What does a C-Reactive Protein blood test check for?

C-reactive protein is a protein produced by the liver and released into the bloodstream within a few hours following tissue injury, infection, or other inflammatory event. After trauma or a heart attack, with active or uncontrolled autoimmune illnesses, and with acute bacterial infections like sepsis, markedly higher levels are reported. CRP levels can rise by a thousand-fold in response to inflammatory diseases, and their elevation in the blood can occur before pain, fever, or other clinical signs. The test detects inflammation caused by acute situations or monitors disease activity in chronic diseases by measuring the level of CRP in the blood.

The CRP test is not a diagnostic tool, although it can tell a doctor if inflammation is occurring. This information can be combined with other indicators like signs and symptoms, a physical exam, and other tests to establish whether someone has an acute inflammatory disorder or is having a flare-up of a chronic inflammatory disease. The health care provider may next do additional tests and treatment.

This CRP test should not be confused with the hs-CRP test. These are two separate CRP tests, each of which measures a different range of CRP levels in the blood for different purposes.

Lab tests often ordered with a C-Reactive Protein test:

  • Sed Rate (ESR)
  • Procalcitonin
  • ANA
  • Rheumatoid Factor
  • Complement

Conditions where a C-Reactive Protein test is recommended:

  • Arthritis
  • Autoimmune Disorders
  • Pelvic Inflammatory Disease
  • Inflammatory Bowel Disease
  • Sepsis
  • Vasculitis
  • Systemic Lupus Erythematosus
  • Meningitis and Encephalitis

Commonly Asked Questions:

How does my health care provider use a C-Reactive Protein test?

A health practitioner uses the C-reactive protein test to diagnose inflammation. CRP is an acute phase reactant, a protein produced by the liver and released into the bloodstream within a few hours following tissue injury, infection, or other inflammatory event. The CRP test is not a diagnostic test for any ailment, but it can be used in conjunction with other tests to determine whether a person has an acute or chronic inflammatory disorder.

CRP, for example, can be used to detect or track substantial inflammation in someone who is suspected of having an acute ailment like:

  • Sepsis is a dangerous bacterial infection.
  • An infection caused by a fungus
  • Inflammation of the pelvis

People with chronic inflammatory diseases can use the CRP test to detect flare-ups and/or see if their medication is working. Here are a few examples:

  • Inflammatory bowel disease
  • Arthritis, which can take many forms.
  • Autoimmune disorders, examples include lupus and vasculitis

CRP is occasionally requested in conjunction with an erythrocyte sedimentation rate, another inflammatory test. While the CRP test is not specific enough to diagnose an illness, it does serve as a broad marker for infection and inflammation, alerting doctors to the need for more testing and treatment. A variety of additional tests may be used to determine the source of inflammation, depending on the probable cause.

What do my C-Reactive Protein test results mean?

CRP levels in the blood are usually low.

CRP levels in the blood that are high or rising indicate the existence of inflammation, but they don't tell you where it is or what's causing it. A high CRP level can establish the presence of a severe bacterial infection in people who are suspected of having one. High levels of CRP in persons with chronic inflammatory disorders indicate a flare-up or that treatment isn't working.

When the CRP level rises and then falls, it indicates that the inflammation or infection is diminishing and/or responding to treatment.

Is there anything else I should know about C-Reactive Protein?

CRP levels can rise during pregnancy, as well as with the use of birth control tablets or hormone replacement therapy. Obese people have also been found to have higher CRP levels.

In the presence of inflammation, the erythrocyte sedimentation rate test will also rise; however, CRP rises first and then falls faster than the ESR.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: Ion Mobility Lipoprotein Fractionation is a test that uses a gas-phase technology to separate the lipid particles by size. As each particle is separated, they are counted.

Also Known As: LDL Particle Testing, LDL-P Test, LDL Subclass Test, sdLDL Test, LDL Fractionations Test, LDL Particle Size Test, LDL Particle Number Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: Fasting preferred, but not required

When is a Lipoprotein Fractionation test ordered?

When someone has a personal or family history of early cardiovascular disease, this testing may be ordered as part of an overall evaluation of cardiac risk, especially if the person does not have typical cardiac risk factors like high cholesterol, high LDL cholesterol, high triglyceride, low HDL cholesterol, smoking, obesity, inactivity, diabetes, and/or hypertension.

When a person with elevated LDL-P and/or a high proportion of tiny, dense LDL particles has undertaken cholesterol-lowering treatment or lifestyle adjustments, the healthcare practitioner may conduct LDL lipoprotein subfraction testing, as well as other lipid tests, to assess treatment success.

Although LDL-P is not typically suggested as a screening test, some healthcare practitioners are using it in conjunction with a battery of other cardiac risk tests to evaluate a person's overall risk of getting CVD.

What does a Lipoprotein Fractionation blood test check for?

Low-density lipoproteins are lipid-transporting particles that travel throughout the body. Protein, cholesterol, triglyceride, and phospholipid molecules are all present in each particle. As they move through the bloodstream, their makeup changes. Lipoprotein particles range in size from large and fluffy to small and dense, depending on which molecules are eliminated and which are added. The relative amounts of particles with different characteristics in the blood are determined by LDL particle testing. Subfractionation testing is a term used to describe this process.

Traditional lipid testing determines the amount of LDL cholesterol in the blood but does not assess the number of LDL particles. Increased numbers of small, dense LDL particles have been linked to inflammation and are more likely to produce atherosclerosis than fewer light, fluffy LDL particles, according to some research. Researchers believe that the existence of an elevated quantity of sdLDL could be one of the reasons why some people have heart attacks while having relatively low total and LDL cholesterol levels.

The number of sdLDL particles in a person's blood is determined in part by genetics, in part by sex, and in part by lifestyle and overall health. Increased levels of sdLDL are linked to certain diseases and disorders, like as diabetes and hypertension.

By examining a person's triglyceride and high-density lipoprotein cholesterol levels, it is usually able to estimate whether they have a high amount of sdLDL particles. Typically, these tests are done as part of a lipid profile. People with high triglycerides and low HDL-C have higher levels of sdLDL. More sdLDL is connected with a triglyceride level greater than 120 mg/dL and an HDL-C level less than 40 mg/dL in men and less than 50 mg/dL in women.

Other lipoprotein particles, such as HDL and VLDL, can also be subfractionated, however these tests are generally utilized in research settings and are not discussed on this page.

Lab tests often ordered with a Lipoprotein Fractionation test:

  • Lipid Panel
  • HDL Cholesterol
  • LDL Cholesterol
  • Direct LDL
  • Apolipoprotein A-1
  • Apolipoprotein B
  • Lipoprotein (a)
  • Triglycerides
  • Homocysteine
  • Hs-CRP
  • VAP

Conditions where a Lipoprotein Fractionation test is recommended:

  • Cardiovascular Disease
  • Heart Disease

How does my health care provider use a Lipoprotein Fractionation test?

Low-density lipoprotein particle testing determines the number, size, density, and/or electrical charge of LDL particles. It may be useful in determining cardiac risk in patients with a personal or family history of heart disease at a young age, particularly if their total cholesterol and LDL cholesterol levels are not markedly increased. LDL subfraction testing is usually done in conjunction with or after a lipid profile.

While the LDL-C test is a good predictor of cardiovascular disease risk for many people, research has indicated that certain persons with healthy LDL-C levels nonetheless have an increased risk of CVD. Similarly, even if their LDL-C is at a safe level, people with chronic diseases like diabetes may be at higher risk. The quantity of LDL particles and/or their size has been recommended as an additional factor to consider when assessing CVD risk in these populations. Lipoprotein subfraction testing may be done in these situations to further assess a person's CVD risk.

LDL-P is sometimes requested to see how well a treatment is working at reducing the quantity of tiny, dense LDL particles.

LDL subfraction testing has been employed in clinical settings, although VLDL or HDL subfraction testing is primarily used in research. This is because LDL cholesterol has been established as the key risk factor for heart disease, and LDL assessment has received increased attention in research and development.

What do my Lipoprotein Fractionation test results mean?

The method and reporting format utilized in an LDL-P test, as well as the person's total cholesterol, LDL-C, VLDL, and/or HDL cholesterol, are all reflected in the results. Because different methods divide subclasses based on different physical qualities, results may not be immediately comparable from one method to the next or from one laboratory to the next.

Usually, the result is evaluated in context of a lipid profile and the risk it implies:

  • If a person has a high number of mostly tiny, dense LDL and an elevated LDL-P, this result will enhance the person's risk of cardiovascular disease beyond the risk associated with total LDL.
  • If a person only has large, fluffy LDL and a low LDL-P, this discovery will not put them at any greater risk.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: A Vitamin D test is a blood test used to determine if you have a Vitamin D deficiency and to monitor Vitamin D levels if you are on supplementation.

Also Known As: Ergocalciferol Test, Vitamin D2 Test, Cholecalciferol Test, Vitamin D3 Test, Calcidiol Test, 25-hydroxyvitamin D Test, Calcifidiol Test, 25-hydroxy-vitamin D Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: Fasting preferred, but not required.

When is a Vitamin D test ordered:

When calcium levels are inadequate and/or a person exhibits symptoms of vitamin D deficiency, such as rickets in children and bone weakening, softness, or fracture in adults, 25-hydroxyvitamin D is frequently ordered to rule out a vitamin D deficit.

When a person is suspected of having a vitamin D deficiency, the test may be requested. Vitamin D deficiency is more common in older folks, people who are institutionalized or homebound and/or have minimal sun exposure, people who are obese, have had gastric bypass surgery, and/or have fat malabsorption. People with darker skin and breastfed babies are also included in this category.

Before starting osteoporosis medication, 25-hydroxyvitamin D is frequently requested.

What does a Vitamin D blood test check for?

Vitamin D is a group of chemicals that are necessary for the healthy development and growth of teeth and bones. The level of vitamin D in the blood is determined by this test.

Vitamin D is tested in the blood in two forms: 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D. The primary form of vitamin D found in the blood is 25-hydroxyvitamin D, which is a relatively inactive precursor to the active hormone 1,25-dihydroxyvitamin D. 25-hydroxyvitamin D is routinely evaluated to assess and monitor vitamin D status in humans due to its longer half-life and higher concentration.

Endogenous vitamin D is created in the skin when exposed to sunshine, whereas exogenous vitamin D is taken through foods and supplements. Vitamin D2 and vitamin D3 have somewhat different molecular structures. Fortified foods, as well as most vitamin preparations and supplements, include the D2 form. The type of vitamin D3 produced by the body is also used in some supplements. When the liver and kidneys convert vitamin D2 and D3 into the active form, 1,25-dihydroxyvitamin D, they are equally effective.

Some tests may not differentiate between the D2 and D3 forms of vitamin D and just report the total result. Newer methods, on the other hand, may record D2 and D3 levels separately and then sum them up to get a total level.

Vitamin D's major function is to assist balance calcium, phosphorus, and magnesium levels in the blood. Vitamin D is necessary for bone growth and health; without it, bones become fragile, misshapen, and unable to mend themselves properly, leading to disorders such as rickets in children and osteomalacia in adults. Vitamin D has also been proven to influence the growth and differentiation of a variety of other tissues, as well as to aid in immune system regulation. Other illnesses, such as autoimmune and cancer, have been linked to vitamin D's other roles.

According to the Centers for Disease Control and Prevention, two-thirds of the US population has adequate vitamin D, while one-quarter is at risk of inadequate vitamin D and 8% is at risk of insufficiency, as defined by the Institute of Medicine's Dietary Reference Intake.

The elderly or obese, persons who don't receive enough sun exposure, people with darker skin, and people who take certain drugs for lengthy periods of time are all at risk of insufficiency. Adequate sun exposure is usually defined as two intervals of 5-20 minutes each week. Vitamin D can be obtained through dietary sources or supplements by people who do not get enough sun exposure.

This test has 3 Biomarkers

  • Vitamin D Total which is a combined measurement of Vitamin D, 25-Oh, D2 and Vitamin 25-Oh, D3
  • Vitamin D, 25-Oh, D2 which is a measurement of ergocalciferol Vitamin D, which is Vitamin D obtained through plant sources. 
  • Vitamin D, 25-Oh, D3 which is a measurement of cholecalciferol Vitamin D, which is Vitamin D obtained through animal sources.

Lab tests often ordered with a Vitamin D test:

  • Complete Blood Count
  • CMP
  • Iron and TIBC
  • Calcium
  • Phosphorus
  • PTH
  • Magnesium

Conditions where a Vitamin D test is recommended:

  • Kidney Disease
  • Osteoporosis
  • Lymphoma
  • Cystic Fibrosis
  • Autoimmune Disorders
  • Celiac Disease
  • Malabsorption
  • Malnutrition

Commonly Asked Questions:

How does my health care provider use a Vitamin D test?

Determine whether a deficit or excess of vitamin D is causing bone weakening, deformity, or improper calcium metabolism.

Because PTH is required for vitamin D activation, it can aid in diagnosing or monitoring problems with parathyroid gland function.

Because vitamin D is a fat-soluble vitamin that is absorbed from the intestine like a fat, it can help monitor the health of people with conditions that interfere with fat absorption, such as cystic fibrosis and Crohn's disease.

People who have had gastric bypass surgery and may not be able to absorb adequate vitamin D should be closely monitored.

When vitamin D, calcium, phosphorus, and/or magnesium supplementation is suggested, it can help assess the success of the treatment.

What do my Vitamin D results result mean?

Despite the fact that vitamin D techniques differ, most laboratories use the same reference intervals. Because toxicity is uncommon, researchers have focused on the lower limit and what cut-off for total 25-hydroxyvitamin D shortage implies.

A low blood level of 25-hydroxyvitamin D could indicate that a person isn't getting enough sunlight or dietary vitamin D to meet his or her body's needs, or that there's an issue with absorption from the intestines. Seizure medications, notably phenytoin, might occasionally interfere with the liver's generation of 25-hydroxyvitamin D.

Vitamin D insufficiency has been linked to an increased risk of some malignancies, immunological illnesses, and cardiovascular disease.

Excessive supplementation with vitamin pills or other nutritional supplements frequently results in a high level of 25-hydroxyvitamin D.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Most Popular

CoQ10 (Coenzyme Q10)

Coenzyme Q10 (CoQ10) is a substance similar to a vitamin. It is found in every cell of the body. Your body makes CoQ10, and your cells use it to produce energy your body needs for cell growth and maintenance. It also functions as an antioxidant, which protects the body from damage caused by harmful molecules.


Description: A CBC or Complete Blood Count with Differential and Platelets test is a blood test that measures many important features of your blood’s red and white blood cells and platelets. A Complete Blood Count can be used to evaluate your overall health and detect a wide variety of conditions such as infection, anemia, and leukemia. It also looks at other important aspects of your blood health such as hemoglobin, which carries oxygen. 

Also Known As: CBC test, Complete Blood Count Test, Total Blood Count Test, CBC with Differential and Platelets test, Hemogram test  

Collection Method: Blood Draw 

Specimen Type: Whole Blood 

Test Preparation: No preparation required 

When is a Complete Blood Count test ordered?  

The complete blood count (CBC) is an extremely common test. When people go to the doctor for a standard checkup or blood work, they often get a CBC. Suppose a person is healthy and their results are within normal ranges. In that case, they may not need another CBC unless their health condition changes, or their healthcare professional believes it is necessary. 

When a person exhibits a variety of signs and symptoms that could be connected to blood cell abnormalities, a CBC may be done. A health practitioner may request a CBC to help diagnose and determine the severity of lethargy or weakness, as well as infection, inflammation, bruises, or bleeding. 

When a person is diagnosed with a disease that affects blood cells, a CBC is frequently done regularly to keep track of their progress. Similarly, if someone is being treated for a blood condition, a CBC may be performed on a regular basis to see if the treatment is working. 

Chemotherapy, for example, can influence the generation of cells in the bone marrow. Some drugs can lower WBC counts in the long run. To monitor various medication regimens, a CBC may be required on a regular basis. 

What does a Complete Blood Count test check for? 

The complete blood count (CBC) is a blood test that determines the number of cells in circulation. White blood cells (WBCs), red blood cells (RBCs), and platelets (PLTs) are three types of cells suspended in a fluid called plasma. They are largely created and matured in the bone marrow and are released into the bloodstream when needed under normal circumstances. 

A CBC is mainly performed with an automated machine that measures a variety of factors, including the number of cells present in a person's blood sample. The findings of a CBC can reveal not only the quantity of different cell types but also the physical properties of some of the cells. 

Significant differences in one or more blood cell populations may suggest the presence of one or more diseases. Other tests are frequently performed to assist in determining the reason for aberrant results. This frequently necessitates visual confirmation via a microscope examination of a blood smear. A skilled laboratory technician can assess the appearance and physical features of blood cells, such as size, shape, and color, and note any anomalies. Any extra information is taken note of and communicated to the healthcare provider. This information provides the health care provider with further information about the cause of abnormal CBC results. 

The CBC focuses on three different types of cells: 

WBCs (White Blood Cells) 

The body uses five different types of WBCs, also known as leukocytes, to keep itself healthy and battle infections and other types of harm. The five different leukocytes are eosinophiles, lymphocytes, neutrophiles, basophils, and monocytes. They are found in relatively steady numbers in the blood. Depending on what is going on in the body, these values may momentarily rise or fall. An infection, for example, can cause the body to manufacture more neutrophils in order to combat bacterial infection. The amount of eosinophils in the body may increase as a result of allergies. A viral infection may cause an increase in lymphocyte production. Abnormal (immature or mature) white cells multiply fast in certain illness situations, such as leukemia, raising the WBC count. 

RBCs (Red Blood Cells) 

The bone marrow produces red blood cells, also known as erythrocytes, which are transferred into the bloodstream after maturing. Hemoglobin, a protein that distributes oxygen throughout the body, is found in these cells. Because RBCs have a 120-day lifespan, the bone marrow must constantly manufacture new RBCs to replace those that have aged and disintegrated or have been lost due to hemorrhage. A variety of diseases, including those that cause severe bleeding, can alter the creation of new RBCs and their longevity. 

The CBC measures the number of RBCs and hemoglobin in the blood, as well as the proportion of RBCs in the blood (hematocrit), and if the RBC population appears to be normal. RBCs are generally homogeneous in size and shape, with only minor differences; however, considerable variances can arise in illnesses including vitamin B12 and folate inadequacy, iron deficiency, and a range of other ailments. Anemia occurs when the concentration of red blood cells and/or the amount of hemoglobin in the blood falls below normal, resulting in symptoms such as weariness and weakness. In a far smaller percentage of cases, there may be an excess of RBCs in the blood (erythrocytosis or polycythemia). This might obstruct the flow of blood through the tiny veins and arteries in extreme circumstances. 

Platelets 

Platelets, also known as thrombocytes, are small cell fragments that aid in the regular clotting of blood. A person with insufficient platelets is more likely to experience excessive bleeding and bruises. Excess platelets can induce excessive clotting or excessive bleeding if the platelets are not operating properly. The platelet count and size are determined by the CBC. 

Lab tests often ordered with a Complete Blood Count test: 

  • Reticulocytes
  • Iron and Total Iron Binding Capacity
  • Basic Metabolic Panel
  • Comprehensive Metabolic Panel
  • Lipid Panel
  • Vitamin B12 and Folate
  • Prothrombin with INR and Partial Thromboplastin Times
  • Sed Rate (ESR)
  • C-Reactive Protein
  • Epstein-Barr Virus
  • Von Willebrand Factor Antigen

Conditions where a Complete Blood Count test is recommended: 

  • Anemia
  • Aplastic Anemia
  • Iron Deficiency Anemia
  • Vitamin B12 and Folate Deficiency
  • Sickle Cell Anemia
  • Heart Disease
  • Thalassemia
  • Leukemia
  • Autoimmune Disorders
  • Cancer
  • Bleeding Disorders
  • Inflammation
  • Epstein-Barr Virus
  • Mononucleosis

Commonly Asked Questions: 

How does my health care provider use a Complete Blood Count test? 

The complete blood count (CBC) is a common, comprehensive screening test used to measure a person's overall health status.  

What do my Complete Blood Count results mean? 

A low Red Blood Cell Count, also known as anemia, could be due many different causes such as chronic bleeding, a bone marrow disorder, and nutritional deficiency just to name a few. A high Red Blood Cell Count, also known as polycythemia, could be due to several conditions including lung disease, dehydration, and smoking. Both Hemoglobin and Hematocrit tend to reflect Red Blood Cell Count results, so if your Red Blood Cell Count is low, your Hematocrit and Hemoglobin will likely also be low. Results should be discussed with your health care provider who can provide interpretation of your results and determine the appropriate next steps or lab tests to further investigate your health. 

What do my Differential results mean? 

A low White Blood Cell count or low WBC count, also known as leukopenia, could be due to a number of different disorders including autoimmune issues, severe infection, and lymphoma. A high White Blood Cell count, or high WBC count, also known as leukocytosis, can also be due to many different disorders including infection, leukemia, and inflammation. Abnormal levels in your White Blood Cell Count will be reflected in one or more of your different white blood cells. Knowing which white blood cell types are affected will help your healthcare provider narrow down the issue. Results should be discussed with your health care provider who can provide interpretation of your results and determine the appropriate next steps or lab tests to further investigate your health. 

What do my Platelet results mean? 

A low Platelet Count, also known as thrombocytopenia, could be due to a number of different disorders including autoimmune issues, viral infection, and leukemia. A high Platelet Count, also known as Thrombocytosis, can also be due to many different disorders including cancer, iron deficiency, and rheumatoid arthritis. Results should be discussed with your health care provider who can provide interpretation of your results and determine the appropriate next steps or lab tests to further investigate your health. 

NOTE: Only measurable biomarkers will be reported. Certain biomarkers do not appear in healthy individuals. 

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.

Reflex Parameters for Manual Slide Review
  Less than  Greater Than 
WBC  1.5 x 10^3  30.0 x 10^3 
Hemoglobin  7.0 g/dL  19.0 g/dL 
Hematocrit  None  75%
Platelet  100 x 10^3  800 x 10^3 
MCV  70 fL  115 fL 
MCH  22 pg  37 pg 
MCHC  29 g/dL  36.5 g/dL 
RBC  None  8.00 x 10^6 
RDW  None  21.5
Relative Neutrophil %  1% or ABNC <500  None 
Relative Lymphocyte %  1% 70%
Relative Monocyte %  None  25%
Eosinophil  None  35%
Basophil  None  3.50%
     
Platelet  <75 with no flags,
>100 and <130 with platelet clump flag present,
>1000 
Instrument Flags Variant lymphs, blasts,
immature neutrophils,  nRBC’s, abnormal platelets,
giant platelets, potential interference
     
The automated differential averages 6000+ cells. If none of the above parameters are met, the results are released without manual review.
CBC Reflex Pathway

Step 1 - The slide review is performed by qualified Laboratory staff and includes:

  • Confirmation of differential percentages
  • WBC and platelet estimates, when needed
  • Full review of RBC morphology
  • Comments for toxic changes, RBC inclusions, abnormal lymphs, and other
  • significant findings
  • If the differential percentages agree with the automated counts and no abnormal cells are seen, the automated differential is reported with appropriate comments

Step 2 - The slide review is performed by qualified Laboratory staff and includes: If any of the following are seen on the slide review, Laboratory staff will perform a manual differential:

  • Immature, abnormal, or toxic cells
  • nRBC’s
  • Disagreement with automated differential
  • Atypical/abnormal RBC morphology
  • Any RBC inclusions

Step 3 If any of the following are seen on the manual differential, a Pathologist will review the slide:

  • WBC<1,500 with abnormal cells noted
  • Blasts/immature cells, hairy cell lymphs, or megakaryocytes
  • New abnormal lymphocytes or monocytes
  • Variant or atypical lymphs >15%
  • Blood parasites
  • RBC morphology with 3+ spherocytes, RBC inclusions, suspect Hgb-C,
  • crystals, Pappenheimer bodies or bizarre morphology
  • nRBC’s

Description: A Comprehensive Metabolic Panel or CMP is a blood test that is a combination of a Basic Metabolic Panel, a Liver Panel, and electrolyte panel, and is used to screen for, diagnose, and monitor a variety of conditions and diseases such as liver disease, diabetes, and kidney disease. 

Also Known As: CMP, Chem, Chem-14, Chem-12, Chem-21, Chemistry Panel, Chem Panel, Chem Screen, Chemistry Screen, SMA 12, SMA 20, SMA 21, SMAC, Chem test

Collection Method: 

Blood Draw 

Specimen Type: 

Serum 

Test Preparation: 

9-12 hours fasting is preferred. 

When is a Comprehensive Metabolic Panel test ordered:  

A CMP is frequently requested as part of a lab test for a medical evaluation or yearly physical. A CMP test consists of many different tests that give healthcare providers a range of information about your health, including liver and kidney function, electrolyte balance, and blood sugar levels. To confirm or rule out a suspected diagnosis, abnormal test results are frequently followed up with other tests that provide a more in depth or targeted analysis of key areas that need investigating. 

What does a Comprehensive Metabolic Panel blood test check for? 

The complete metabolic panel (CMP) is a set of 20 tests that provides critical information to a healthcare professional about a person's current metabolic status, check for liver or kidney disease, electrolyte and acid/base balance, and blood glucose and blood protein levels. Abnormal results, particularly when they are combined, can suggest a problem that needs to be addressed. 

The following tests are included in the CMP: 

  • Albumin: this is a measure of Albumin levels in your blood. Albumin is a protein made by the liver that is responsible for many vital roles including transporting nutrients throughout the body and preventing fluid from leaking out of blood vessels. 

  • Albumin/Globulin Ratio: this is a ratio between your total Albumin and Globulin  

  • Alkaline Phosphatase: this is a measure of Alkaline phosphatase or ALP in your blood. Alkaline phosphatase is a protein found in all body tissues, however the ALP found in blood comes from the liver and bones. Elevated levels are often associated with liver damage, gallbladder disease, or bone disorder. 

  • Alt: this is a measure of Alanine transaminase or ALT in your blood. Alanine Aminotransferase is an enzyme found in the highest amounts in the liver with small amounts in the heart and muscles. Elevated levels are often associated with liver damage. 

  • AST: this is a measure of Aspartate Aminotransferase or AST. Aspartate Aminotransferase is an enzyme found mostly in the heart and liver, with smaller amounts in the kidney and muscles. Elevated levels are often associated with liver damage. 

  • Bilirubin, Total: this is a measure of bilirubin in your blood. Bilirubin is an orange-yellowish waste product produced from the breakdown of heme which is a component of hemoglobin found in red blood cells. The liver is responsible for removal of bilirubin from the body. 

  • Bun/Creatinine Ratio: this is a ratio between your Urea Nitrogen (BUN) result and Creatinine result.  

  • Calcium: this is a measurement of calcium in your blood. Calcium is the most abundant and one of the most important minerals in the body as it essential for proper nerve, muscle, and heart function. 

  • Calcium: is used for blood clot formation and the formation and maintenance of bones and teeth. 

  • Carbon Dioxide: this is a measure of carbon dioxide in your blood. Carbon dioxide is a negatively charged electrolyte that works with other electrolytes such as chloride, potassium, and sodium to regulate the body’s acid-base balance and fluid levels.  

  • Chloride: this is a measure of Chloride in your blood. Chloride is a negatively charged electrolyte that works with other electrolytes such as potassium and sodium to regulate the body’s acid-base balance and fluid levels. 

  • Creatinine: this is a measure of Creatinine levels in your blood. Creatinine is created from the breakdown of creatine in your muscles and is removed from your body by the kidneys. Elevated creatinine levels are often associated with kidney damage. 

  • Egfr African American: this is a measure of how well your kidneys are functioning. Glomeruli are tiny filters in your kidneys that filter out waste products from your blood for removal while retaining important substances such as nutrients and blood cells. 

  • Egfr Non-Afr. American: this is a measure of how well your kidneys are functioning. Glomeruli are tiny filters in your kidneys that filter out waste products from your blood for removal while retaining important substances such as nutrients and blood cells. 

  • Globulin: this is a measure of all blood proteins in your blood that are not albumin. 

  • Glucose: this is a measure of glucose in your blood. Glucose is created from the breakdown of carbohydrates during digestion and is the body’s primary source of energy. 

  • Potassium: this is a measure of Potassium in your blood. Potassium is an electrolyte that plays a vital role in cell metabolism, nerve and muscle function, and transport of nutrients into cells and removal of wastes products out of cells. 

  • Protein, Total: this is a measure of total protein levels in your blood. 
    Sodium: this is a measure of Sodium in your blood. Sodium is an electrolyte that plays a vital role in nerve and muscle function. 

  • Urea Nitrogen (Bun): this is a measure of Urea Nitrogen in your blood, also known as Blood UreaNitrogen (BUN). Urea is a waste product created in the liver when proteins are broken down into amino acids. Elevated levels are often associated with kidney damage. 

Lab tests often ordered with a Comprehensive Metabolic Panel test: 

  • Complete Blood Count with Differential and Platelets
  • Iron and Total Iron Binding Capacity
  • Lipid Panel
  • Vitamin B12 and Folate
  • Prothrombin with INR and Partial Thromboplastin Times
  • Sed Rate (ESR)
  • C-Reactive Protein

Conditions where a Comprehensive Metabolic Panel test is recommended: 

  • Diabetes
  • Kidney Disease
  • Liver Disease
  • Hypertension

Commonly Asked Questions: 

How does my health care provider use a Comprehensive Metabolic Panel test? 

The comprehensive metabolic panel (CMP) is a broad screening tool for assessing organ function and detecting diseases like diabetes, liver disease, and kidney disease. The CMP test may also be requested to monitor known disorders such as hypertension and to check for any renal or liver-related side effects in persons taking specific drugs. If a health practitioner wants to follow two or more separate CMP components, the full CMP might be ordered because it contains more information. 

What do my Comprehensive Metabolic Panel test results mean? 

The results of the tests included in the CMP are usually analyzed together to look for patterns. A single abnormal test result may indicate something different than a series of abnormal test findings. A high result on one of the liver enzyme tests, for example, is not the same as a high result on several liver enzyme tests. 

Several sets of CMPs, frequently performed on various days, may be examined to gain insights into the underlying disease and response to treatment, especially in hospitalized patients. 

Out-of-range findings for any of the CMP tests can be caused by a variety of illnesses, including kidney failure, breathing issues, and diabetes-related complications, to name a few. If any of the results are abnormal, one or more follow-up tests are usually ordered to help determine the reason and/or establish a diagnosis. 

Is there anything else I should know? 

A wide range of prescription and over-the-counter medications can have an impact on the results of the CMP's components. Any medications you're taking should be disclosed to your healthcare professional. Similarly, it is critical to provide a thorough history because many other circumstances can influence how your results are interpreted. 

What's the difference between the CMP and the BMP tests, and why would my doctor choose one over the other? 

The CMP consists of 14 tests, while the basic metabolic panel (BMP) is a subset of those with eight tests. The liver (ALP, ALT, AST, and bilirubin) and protein (albumin and total protein) tests are not included. If a healthcare provider wants a more thorough picture of a person's organ function or to check for specific illnesses like diabetes or liver or kidney disease, he or she may prescribe a CMP rather than a BMP. 

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.

Please note the following regarding BUN/Creatinine ratio: 

The lab does not report the calculation for the BUN/Creatinine Ratio unless one or both biomarkers’ results fall out of the published range. 

If you still wish to see the value, it's easy to calculate. Simply take your Urea Nitrogen (BUN) result and divide it by your Creatinine result.  

As an example, if your Urea Nitrogen result is 11 and your Creatinine result is 0.86, then you would divide 11 by 0.86 and get a BUN/Creatinine Ratio result of 12.79. 


Most Popular

Description: A cortisol test measures the amount of cortisol in the blood. These levels will start off high in the morning and throughout the say they become lower. At midnight they are typically at their lowest level. Someone who works a night shift or has an irregular sleep schedule may have a different pattern. This test can be used to determine Cushing's or Addison's Disease.

Also Known As: Cortisol AM Test, Cortisol Total Test, Cortisol Test, Cortisol Blood Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: Specimen must be drawn between 7 a.m. and 9 a.m. Test is not recommended for patients receiving prednisone/prednisolone therapy due to cross reactivity with the antibody used in this test.

When is a Cortisol AM test ordered?

When a person has symptoms that point to a high level of cortisol and Cushing syndrome, a cortisol test may be recommended.

Women with irregular menstrual periods and increased facial hair may be tested, and children with delayed development and small stature may also be tested.

When someone exhibits symptoms that point to a low cortisol level, adrenal insufficiency, or Addison disease, this test may be ordered.

What does a Cortisol AM blood test check for?

Cortisol is a hormone that plays a function in protein, lipid, and carbohydrate metabolism. It has an effect on blood glucose levels, blood pressure, and immune system regulation. Only a small fraction of cortisol in the blood is "free" and biologically active; the majority is attached to a protein. Cortisol is a hormone that is produced into the urine and found in the saliva. This test determines how much cortisol is present in the blood, urine, or saliva.

Cortisol levels in the blood usually rise and fall in a pattern known as "diurnal variation." It reaches its highest point early in the morning, then gradually decreases over the day, reaching its lowest point around midnight. When a person works irregular shifts and sleeps at different times of the day, this rhythm might fluctuate, and it can be disrupted when a disease or condition inhibits or stimulates cortisol production.

The adrenal glands, two triangle organs that sit on top of the kidneys, generate and emit cortisol. The hypothalamus in the brain and the pituitary gland, a small organ below the brain, control the hormone's production. The hypothalamus produces corticotropin-releasing hormone when blood cortisol levels drop, which tells the pituitary gland to create ACTH. The adrenal glands are stimulated by ACTH to generate and release cortisol. A certain amount of cortisol must be produced for normal adrenal, pituitary gland, and brain function.

Cushing syndrome is a collection of signs and symptoms associated with an unusually high cortisol level. Cortisol production may be increased as a result of:

  • Large doses of glucocorticosteroid hormones are given to treat a range of ailments, including autoimmune illness and certain cancers.
  • Tumors that produce ACTH in the pituitary gland and/or other regions of the body.
  • Cortisol production by the adrenal glands is increased as a result of a tumor or abnormal expansion of adrenal tissues.

Rarely, CRH-producing malignancies in various regions of the body.

Cortisol production may be reduced as a result of:

  • Secondary adrenal insufficiency is caused by an underactive pituitary gland or a pituitary gland tumor that prevents ACTH production.
  • Primary adrenal insufficiency, often known as Addison disease, is characterized by underactive or injured adrenal glands that limit cortisol production.

After quitting glucocorticosteroid hormone medication, especially if it was abruptly stopped after a long time of use.

Lab tests often ordered with a Cortisol AM test:

  • Cortisol PM
  • ACTH
  • Aldosterone
  • 17-Hydroxyprogesterone
  • Growth Hormone

Conditions where a Cortisol AM test is recommended:

  • Addison’s Disease
  • Cushing’s Syndrome
  • Endocrine Syndromes
  • Hypertension
  • Pituitary Disorders

How does my health care provider use a Cortisol AM test?

A cortisol test can be used to detect Cushing syndrome, which is characterized by an excess of cortisol, as well as adrenal insufficiency or Addison disease, which are characterized by a deficiency of cortisol. Among other things, the hormone cortisol controls how proteins, lipids, and carbohydrates are metabolized. Cortisol levels in the blood normally increase and fall in a "diurnal variation" pattern, rising early in the morning, dropping during the day, and reaching their lowest point around midnight.

The adrenal glands generate and excrete cortisol. The hypothalamus in the brain and the pituitary gland, a small organ below the brain, control the hormone's production. The hypothalamus produces corticotropin-releasing hormone when blood cortisol levels drop, which tells the pituitary gland to create ACTH. Cortisol production and release are triggered by ACTH in the adrenal glands. A certain amount of cortisol must be produced for normal brain, pituitary, and adrenal gland function.

Only a small fraction of cortisol in the blood is "free" and biologically active; the majority is attached to a protein. Blood cortisol testing assesses both protein-bound and free cortisol, but urine and saliva cortisol testing assesses only free cortisol, which should be in line with blood cortisol levels. Multiple blood and/or saliva cortisol levels collected at various times, such as 8 a.m. and 4 p.m., can be used to assess cortisol levels and diurnal variation. A 24-hour urine cortisol sample will not reveal diurnal variations; instead, it will assess the total quantity of unbound cortisol voided over the course of 24 hours.

If an elevated amount of cortisol is found, a health professional will conduct additional tests to confirm the results and discover the cause.

If a person's blood cortisol level is abnormally high, a doctor may order additional tests to be sure the high cortisol is indeed abnormal. Additional testing could involve monitoring 24-hour urinary cortisol, doing an overnight dexamethasone suppression test, and/or obtaining a salivary sample before sleep to detect cortisol at its lowest level. Urinary cortisol testing necessitates collecting urine over a set length of time, usually 24 hours. Because ACTH is released in pulses by the pituitary gland, this test can assist evaluate whether a raised blood cortisol level is a true rise.

An ACTH stimulation test may be ordered if a health practitioner feels that the adrenal glands are not releasing enough cortisol or if initial blood tests reveal insufficient cortisol production.

The purpose of ACTH stimulation is to compare the levels of cortisol in a person's blood before and after receiving an injection of synthetic ACTH. If the adrenal glands are healthy, the reaction to ACTH stimulation will be an increase in cortisol levels. Low amounts of cortisol will result if they are broken or not functioning properly. To distinguish between adrenal and pituitary insufficiency, a lengthier variant of this test can be used.

What do my Cortisol AM test results mean?

Cortisol levels are typically lowest before bedtime and highest shortly after awakening, though this pattern can be disrupted if a person works rotating shifts and sleeps at various times on separate days.

Excess cortisol and Cushing syndrome are indicated by an increased or normal cortisol level shortly after awakening, as well as a level that does not diminish by bedtime. If the excess cortisol is not suppressed after an overnight dexamethasone suppression test, the 24-hour urine cortisol is elevated, or the late-night salivary cortisol level is elevated, the excess cortisol is likely due to abnormal increased ACTH production by the pituitary or a tumor outside of the pituitary, or abnormal production by the adrenal glands. Additional tests will aid in determining the root of the problem.

If the subject of the examination reacts to an ACTH stimulation test and has insufficient cortisol levels, the issue is most likely brought on by the pituitary's insufficient production of ACTH. The adrenal glands are most likely the source of the issue if the subject does not react to the ACTH stimulation test.

 

An additional test, like as a CT scan, may be used by the medical professional to evaluate the degree of any gland damage once an irregularity has been identified and related to the pituitary gland, the adrenal glands, or another cause.

Important: Patient needs to have the specimen collected between 7 a.m.-9 a.m.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Most Popular

Description: A cortisol test measures the amount of cortisol in the blood. These levels will start off high in the morning and throughout the say they become lower. At midnight they are typically at their lowest level. Someone who works a night shift or has an irregular sleep schedule may have a different pattern. This test can be used to determine Cushing's or Addison's Disease.

Also Known As: Cortisol Total Test, Cortisol Test, Cortisol Blood Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: Test not recommended when patient is on prednisone/prednisolone therapy due to cross reactivity with the antibody used in this test

When is a Cortisol Total test ordered?

When a person has symptoms that point to a high level of cortisol and Cushing syndrome, a cortisol test may be recommended.

Women with irregular menstrual periods and increased facial hair may be tested, and children with delayed development and small stature may also be tested.

When someone exhibits symptoms that point to a low cortisol level, adrenal insufficiency, or Addison disease, this test may be ordered.

What does a Cortisol Total blood test check for?

Cortisol is a hormone that plays a function in protein, lipid, and carbohydrate metabolism. It has an effect on blood glucose levels, blood pressure, and immune system regulation. Only a small fraction of cortisol in the blood is "free" and biologically active; the majority is attached to a protein. Cortisol is a hormone that is produced into the urine and found in the saliva. This test determines how much cortisol is present in the blood, urine, or saliva.

Cortisol levels in the blood usually rise and fall in a pattern known as "diurnal variation." It reaches its highest point early in the morning, then gradually decreases over the day, reaching its lowest point around midnight. When a person works irregular shifts and sleeps at different times of the day, this rhythm might fluctuate, and it can be disrupted when a disease or condition inhibits or stimulates cortisol production.

The adrenal glands, two triangle organs that sit on top of the kidneys, generate and emit cortisol. The hypothalamus in the brain and the pituitary gland, a small organ below the brain, control the hormone's production. The hypothalamus produces corticotropin-releasing hormone when blood cortisol levels drop, which tells the pituitary gland to create ACTH. The adrenal glands are stimulated by ACTH to generate and release cortisol. The brain, pituitary, and adrenal glands must all be operating properly in order to produce enough levels of cortisol.

Cushing syndrome is a collection of signs and symptoms associated with an unusually high cortisol level. Cortisol production may be increased as a result of:

  • Large doses of glucocorticosteroid hormones are given to treat a range of ailments, including autoimmune illness and certain cancers.
  • Tumors that produce ACTH in the pituitary gland and/or other regions of the body.
  • Cortisol production by the adrenal glands is increased as a result of a tumor or abnormal expansion of adrenal tissues.

Rarely, CRH-producing malignancies in various regions of the body.

Cortisol production may be reduced as a result of:

  • Secondary adrenal insufficiency is caused by an underactive pituitary gland or a pituitary gland tumor that prevents ACTH production.
  • Primary adrenal insufficiency, often known as Addison disease, is characterized by underactive or injured adrenal glands that limit cortisol production.

After quitting glucocorticosteroid hormone medication, especially if it was abruptly stopped after a long time of use.

Lab tests often ordered with a Cortisol Total test:

  • Cortisol PM
  • Cortisol AM
  • Cortisol Saliva
  • ACTH
  • Aldosterone
  • 17-Hydroxyprogesterone
  • Growth Hormone

Conditions where a Cortisol Test is recommended:

  • Addison’s Disease
  • Cushing’s Syndrome
  • Endocrine Syndromes
  • Hypertension
  • Pituitary Disorders

How does my health care provider use a Cortisol Total test?

A cortisol test can be used to detect Cushing syndrome, which is characterized by an excess of cortisol, as well as adrenal insufficiency or Addison disease, which are characterized by a deficiency of cortisol. Cortisol is a hormone that regulates protein, lipid, and carbohydrate metabolism, among other functions. Cortisol levels in the blood normally increase and fall in a "diurnal variation" pattern, rising early in the morning, dropping during the day, and reaching their lowest point around midnight.

The adrenal glands generate and excrete cortisol. The hypothalamus in the brain and the pituitary gland, a small organ below the brain, control the hormone's production. The hypothalamus produces corticotropin-releasing hormone when blood cortisol levels drop, which tells the pituitary gland to create ACTH. The adrenal glands are stimulated by ACTH to generate and release cortisol. The brain, pituitary, and adrenal glands must all be operating properly in order to produce enough levels of cortisol.

Only a small fraction of cortisol in the blood is "free" and biologically active; the majority is attached to a protein. Blood cortisol testing assesses both protein-bound and free cortisol, but urine and saliva cortisol testing assesses only free cortisol, which should be in line with blood cortisol levels. Multiple blood and/or saliva cortisol levels collected at various times, such as 8 a.m. and 4 p.m., can be used to assess cortisol levels and diurnal variation. A 24-hour urine cortisol sample will not reveal diurnal variations; instead, it will assess the total quantity of unbound cortisol voided over the course of 24 hours.

If an elevated amount of cortisol is found, a health professional will conduct additional tests to confirm the results and discover the cause.

If a person's blood cortisol level is abnormally high, a doctor may order additional tests to be sure the high cortisol is indeed abnormal. Additional testing could involve monitoring 24-hour urinary cortisol, doing an overnight dexamethasone suppression test, and/or obtaining a salivary sample before sleep to detect cortisol at its lowest level. Urinary cortisol testing necessitates collecting urine over a set length of time, usually 24 hours. Because ACTH is released in pulses by the pituitary gland, this test can assist evaluate whether a raised blood cortisol level is a true rise.

An ACTH stimulation test may be ordered if a health practitioner feels that the adrenal glands are not releasing enough cortisol or if initial blood tests reveal insufficient cortisol production.

ACTH stimulation is a test that measures the amount of cortisol in a person's blood before and after a synthetic ACTH injection. Cortisol levels will rise in response to ACTH stimulation if the adrenal glands are functioning normally. Cortisol levels will be low if they are damaged or not working properly. To distinguish between adrenal and pituitary insufficiency, a lengthier variant of this test can be used.

What do my Cortisol Total test results mean?

Cortisol levels are typically lowest before bedtime and highest shortly after awakening, though this pattern can be disrupted if a person works rotating shifts and sleeps at various times on separate days.

Excess cortisol and Cushing syndrome are indicated by an increased or normal cortisol level shortly after awakening, as well as a level that does not diminish by bedtime. If the excess cortisol is not suppressed after an overnight dexamethasone suppression test, the 24-hour urine cortisol is elevated, or the late-night salivary cortisol level is elevated, the excess cortisol is likely due to abnormal increased ACTH production by the pituitary or a tumor outside of the pituitary, or abnormal production by the adrenal glands. Additional tests will aid in determining the root of the problem.

If the person examined responds to an ACTH stimulation test and has insufficient cortisol, the problem is most likely due to insufficient ACTH production by the pituitary. If the person does not respond to the ACTH stimulation test, the problem is most likely to be with the adrenal glands. Secondary adrenal insufficiency occurs when the adrenal glands are underactive as a result of pituitary dysfunction and/or insufficient ACTH synthesis. Adrenal injury causes decreased cortisol production, which is referred to as primary adrenal insufficiency or Addison disease.

Once an irregularity has been found and linked to the pituitary gland, adrenal glands, or another source, the health practitioner may utilize additional testing, such as a CT scan, to determine the extent of any gland damage.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Most Popular
Serum creatinine is useful in the evaluation of kidney function and in monitoring renal dialysis. A serum creatinine result within the reference range does not rule out renal function impairment: serum creatinine is not sensitive to early renal damage since it varies with age, gender and ethnic background. The impact of these variables can be reduced by an estimation of the glomerular filtration rate using an equation that includes serum creatinine, age and gender.

  • Cardio IQ Vitamin D, 25-Hydroxy, LC/MS/MS [ 91735 ]
  • Coenzyme Q10 [ 19826 ]
  • Ferritin [ 457 ]
  • Glucose [ 483 ]
  • Insulin [ 561 ]
  • Iron and Total Iron Binding Capacity (TIBC) [ 7573 ]
  • Magnesium, RBC [ 623 ]
  • Selenium [ 5507 ]
  • TSH [ 899 ]
  • Vitamin A (Retinol) [ 921 ]
  • Vitamin B1 (Thiamine), Blood, LC/MS/MS [ 5042 ]
  • Vitamin B12 (Cobalamin) and Folate Panel, Serum [ 7065 ]
  • Vitamin B2, Plasma [ 36399 ]

Elevated levels of serum erythropoietin (EPO) occur in patients with anemias due to increased red cell destruction in hemolytic anemia and also in secondary polycythemias associated with impaired oxygen delivery to the tissues, impaired pulmonary oxygen exchange, abnormal hemoglobins with increased oxygen affinity, constriction of the renal vasculature, and inappropriate EPO secretion caused by certain renal and extrarenal tumors. Normal or depressed levels may occur in anemias due to increased oxygen delivery to tissues, in hypophosphatemia, and in polycythemia vera.


Extreme fatigue that is ongoing and cannot be explained by a medical condition or has no other scientifically proven cause is called Chronic Fatigue Syndrome or CFS. Chronic Fatigue Syndrome can be detrimental to a person’s ability to perform and complete even the most basic daily or routine tasks and activities.

Even though a person is continuously fatigued, they have trouble sleeping and often wake to feel as if they have not slept at all.

Other symptoms that they may experience include:

  • Recurrent headaches
  • Pain in the joints and muscles
  • Frequent sore throat
  • Problems with memory, focus, and concentration

Not every person may experience all these symptoms and may be affected to varying degrees, which may change from day to day. In extreme cases, CFS can last for an extended period exceeding six months. A person may be able to function almost normally on days when the symptoms are mild but on bad days, may not be able to get out of bed at all. Resting and sleeping do not resolve chronic fatigue, and mental activity may increase the symptoms.

CFS can affect any person regardless of age, gender, ethnicity, or economic standing anywhere in the world. However, the disorder is estimated to be four times as prevalent in females than in males and in those between the ages of 40 and 50 years. The CDC (Centers for Disease Control and Prevention) has estimated that around 1 million people in the United States have CFS. However, only around 20% of these know that they have the disorder and have been formally diagnosed.

Currently, there is very little known about the cause of CFS. Although a single cause has not been identified, scientific research has revealed several different triggers that include the following:

  • Although no specific microbe has been attributed to the cause of CFS, viral infections like the Epstein Barr Virus may trigger the condition
  • Trauma, stress, or allergies that result in immune dysfunction may, in turn, trigger CFS
  • Malnourishment or nutritional deficiencies
  • Neurally mediated hypotension or extremely low blood pressure causing fainting may be a trigger
  • Disturbances in the hypothalamic-pituitary-adrenal (HPA) axis, which may result from inactivity, psychiatric comorbidity, extended stress, disturbances in sleep patterns, and medication
  • After studying familial CFS patterns, researchers believe that there may be a genetic component that would make certain people more predisposed to the disorder

Current research points to CFS being a group of disorders that all result in the same symptoms rather than a singular condition. However, more research is required for scientific confirmation.

A definitive group of onset symptoms has been identified by those who have been diagnosed with CFS. In other words, specific symptoms that they experienced during a time when they had the required energy to function and complete routine tasks. It has been concluded that around 75% of the time, CFS patients experience what appear to be flu-like symptoms. In other patients, CFS followed an extended or extreme period of mental or physical stress. The symptoms of CFS also develop slowly, resulting in a gradual decline in energy levels and overall wellbeing.

There are, however, several illnesses, diseases, and health conditions that may present with a similar set of symptoms and side effects but must be distinguished from CFS. These conditions are the underlying cause of chronic fatigue and may be short or long-term. Some diseases that may present with chronic fatigue but must exclude a diagnosis of CFS include:

  • Hypothyroidism or thyroid that is under-performing
  • Mononucleosis commonly called mono
  • Psychological disorders or mental health conditions
  • Eating disorders like anorexia or bulimia
  • Cancer and cancer treatments
  • Autoimmune diseases
  • Infection
  • Abuse or addiction to substances such as drugs and alcohol
  • Side effects or reactions to prescription medications
  • An inability to achieve enough uninterrupted sleep

Unfortunately, there is currently no single evaluation or test that can be used to diagnose CFS accurately. The signs and symptoms of the disorder are used as qualifying criteria to reach a diagnosis.

Signs And Symptoms Of CFS

On conjunction with a panel of international expert researchers, the CDC have established a definition for Chronic Fatigue Syndrome and a list of signs and symptoms that therefore define the disorder:

  • Severe chronic fatigue must last for a minimum period of 6 consecutive months or longer without any known medical conditions having been previously clinically diagnosed
  • The ability to perform basic or routine daily tasks must be severely affected

A minimum of four of the following eight symptoms must occur during the six-month period, either ongoing or on a recurring basis:

  • An inability to concentrate, shortened attention span, and impaired short-term memory
  • Frequent or persistent sore throat
  • Lymph nodes in the neck or armpits that are sore and tender
  • Pain in muscles
  • Multiple joint pain that is unaccompanied by inflammation (swelling) and/or redness
  • Unfamiliar headaches, more extreme or occurring in new patterns
  • Waking up feeling unrefreshed
  • Extreme fatigue that lasts more than 24 hours after mental or physical activity

The National Academy of Medicine Committee on Diagnostic Criteria for Myalgic Encephalomyelitis (Chronic Fatigue Syndrome) released additional diagnostic criteria in a report for CFS to improve on the existing criteria for diagnosis and care of those who are suffering from the health condition. Some of the criteria are similar or the same as those that have been outlined above. Additional criteria that medical practitioners can use to diagnose the ME or CFS accurately include:

  • Extreme fatigue must be new and be present for more than six months, defined by a specific beginning. It should not have been caused by excessive exercise and cannot be improved by resting. It must affect the ability to perform basic daily activities such as work, school personal hygiene to a certain degree.
  • It must negatively impact general wellbeing and present with a general feeling of malaise (illness), which is increased after expending energy

One of the following symptoms should also be present at least 50% of the time, and it must be determined how severe and how often they occur:

  • Cognitive Impairment resulting in an inability to concentrate for a period of time, a short attention span as well as problems with memory
  • Orthostatic Intolerance is feeling dizzy or light-headed or having heart palpitations when rising from a sitting or resting position that could result in faintness or fainting

The less common side effects and symptoms of CFS include:

  • Gastrointestinal conditions such as abdominal pain, bloating, loss of appetite, nausea, and/or vomiting
  • Sensitivity or an adverse reaction (allergic reaction) to certain foods, odors, sounds, medications, or chemicals
  • Night sweats or chills
  • Constant or consistent (chronic) coughing
  • Anxiety and/or depression
  • Frequent urination
  • Sensitivity to cold and heat
  • Lowered body temperature
  • Dry mouth and eyes
  • Earache
  • TMJ (Temporomandibular Joint) dysfunction or pain in the jaw
  • Mild fever
  • Stiff joints, particularly in the mornings
  • A sensation of numbness, tingling, or burning in the extremities (hands and feet) and the face
  • Shortness of breath

Tests For CFS

As there are currently no specific blood tests, imaging scans, or other means of an accurate diagnosis for chronic fatigue syndrome, diagnosis is one of exclusion. This means that all illnesses, disease, or other health conditions that may present with similar symptoms must be excluded before arriving at a diagnosis of CFS.

Diagnosis will, therefore, involve the following:

  • Detailed documentation of the medical history of a patient
  • A thorough medical examination
  • Performing cognitive function tests
  • Excluding any other conditions that may be causing or aggravating fatigue as well as providing treatment for those conditions that can be treated
  • Ensuring that the condition fulfills the criteria to meet the CDC definition and/or National Academy of Medicine criteria
  • Monitoring of a patient over a period of time to evaluate whether there may be any other underlying causes

Classification of idiopathic or unknown chronic fatigue will be made should the condition fail to meet the CDC definition or the National Academy of Medicine criteria or where the symptoms are not severe enough to warrant a diagnosis of CFS.

As there is currently no definitive test to diagnose CFS, laboratory testing is used to eliminate and provide treatment options for health conditions or disorders with similar symptoms. The CDC provides guidelines for the basic tests that should be performed, but these could be dependent on other symptoms as well as the health care practitioner managing the case.

Laboratory Tests For Exclusion Purposes

A Comprehensive Metabolic Panel (CMP) includes a variety of different tests to determine the health of organs and identify a range of health conditions such as kidney and liver disease.

A Complete Blood Count (CBC) evaluates blood disorders specifically to look for infection or anemia and other conditions.

C-reactive Protein or Erythrocyte Sedimentation rate, which acts as indicators of nonspecific inflammation in the body.

Thyroid Stimulating Hormone (TSH), including other types of thyroid testing for hypothyroidism.

Iron Studies to detect anemia or an iron deficiency.

Urinalysis to identify infections or other conditions.

Any additional tests that a medical practitioner deems necessary in identifying diseases or health conditions or excluding them as causes of the symptoms of CFS. These additional tests may include:

Antinuclear Bodies (ANA) to identify autoimmune disorders.

Lyme disease tests if the disease is suspected, and the geographical area gives cause for testing.

Rheumatoid Factor to detect Rheumatoid Arthritis.

HIV Antibody Test to identify or eliminate an HIV infection.

Cortisol Testineg to identify low concentrations of cortisol as well as adrenal gland function.