Name Matches




This panel contains Cortisol, A.M. #4212, which requires the patient to have their specimen collected between 7 a.m. - 9 a.m.


This panel contains Cortisol, A.M. #4212, which requires the patient to have their specimen collected between 7 a.m. - 9 a.m.


This panel contains Cortisol, A.M. #4212, which requires the patient to have their specimen collected between 7 a.m. - 9 a.m.


This panel contains Cortisol, A.M. #4212, which requires the patient to have their specimen collected between 7 a.m. - 9 a.m.


This panel contains Cortisol, A.M. #4212, which requires the patient to have their specimen collected between 7 a.m. - 9 a.m.






This panel contains Cortisol, A.M. #4212, which requires the patient to have their specimen collected between 7 a.m. - 9 a.m.


This panel contains Cortisol, A.M. #4212, which requires the patient to have their specimen collected between 7 a.m. - 9 a.m.


This panel contains Cortisol, A.M. #4212, which requires the patient to have their specimen collected between 7 a.m. - 9 a.m.


This panel contains Cortisol, A.M. #4212, which requires the patient to have their specimen collected between 7 a.m. - 9 a.m.


This panel contains Cortisol, A.M. #4212, which requires the patient to have their specimen collected between 7 a.m. - 9 a.m.


Most Popular
Aids in the diagnosis of primary disease of skeletal muscle myocardial infarction and viral hepatitis.

Serum alkaline phosphatase levels are of interest in the diagnosis of hepatobiliary disorders and bone disease associated with increased osteoblastic activity. Moderate elevations of alkaline phosphatase may be seen in several conditions that do not involve the liver or bone. Among these are Hodgkin's disease, congestive heart failure, ulcerative colitis, regional enteritis, and intra-abdominal bacterial infections. Elevations are also observed during the third trimester of pregnancy.


Description: An antinuclear antibody screening is a blood test that is going to look for a positive or negative result. If the result comes back as positive further test will be done to look for ANA Titer and Pattern. Antinuclear antibodies are associated with Lupus.

Also Known As: ANA Test, ANA Screen IFA with Reflex to Titer and pattern IFA Test, ANA with Reflex Test, Antinuclear Antibody Screen Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

IMPORTANT Reflex Information: If ANA Screen, IFA is positive, then ANA Titer and Pattern will be performed at an additional charge of $13.00

When is an ANA Screen test ordered?

When someone exhibits signs and symptoms of a systemic autoimmune illness, the ANA test is requested. Symptoms of autoimmune illnesses can be vague and non-specific, and they can fluctuate over time, steadily deteriorate, or oscillate between periods of flare-ups and remissions.

What does an ANA Screen blood test check for?

Antinuclear antibodies are a type of antibody produced by the immune system when it is unable to differentiate between its own cells and foreign cells. Autoantibodies are antibodies that attack the body's own healthy cells, causing symptoms like tissue and organ inflammation, joint and muscle discomfort, and weariness. The moniker "antinuclear" comes from the fact that ANA specifically targets chemicals located in a cell's nucleus. The presence of these autoantibodies in the blood is detected by the ANA test.

The presence of ANA may be a sign of an autoimmune process, and it has been linked to a variety of autoimmune illnesses, the most common of which being systemic lupus erythematosus.

One of the most common tests used to detect an autoimmune disorder or rule out other conditions with comparable signs and symptoms is the ANA test. As a result, it's frequently followed by other autoantibody tests that can help establish a diagnosis. An ENA panel, anti-dsDNA, anti-centromere, and/or anti-histone test are examples of these.

Lab tests often ordered with an ANA Screen test:

  • ENA Panel
  • Sed Rate (ESR)
  • C-Reactive Protein
  • Complement
  • AMA
  • Centromere antibody
  • Histone Antibody

Conditions where an ANA Screen test is recommended:

  • Autoimmune Disorders
  • Lupus
  • Rheumatoid Arthritis
  • Sjogren Syndrome
  • Scleroderma

How does my health care provider use an ANA Screen test?

One of the most often performed tests to diagnose systemic lupus erythematosus is the antinuclear antibody test. It serves as the first step in the evaluation process for autoimmune diseases that might impact various body tissues and organs.

When a person's immune system fails to discriminate between their own cells and foreign cells, autoantibodies called ANA are created. They attack chemicals found in a cell's nucleus, causing organ and tissue damage.

ANA testing may be utilized in conjunction with or after other autoantibody tests, depending on a person's indications and symptoms and the suspected condition. Antibodies that target specific compounds within cell nuclei, such as anti-dsDNA, anti-centromere, anti-nucleolar, anti-histone, and anti-RNA antibodies, are detected by some of these tests, which are considered subsets of the general ANA test. In addition, an ENA panel can be utilized as a follow-up to an ANA.

These further tests are performed in addition to a person's clinical history to assist diagnose or rule out other autoimmune conditions such Sjögren syndrome, polymyositis, and scleroderma.

To detect ANA, various laboratories may employ different test procedures. Immunoassay and indirect fluorescent antibody are two typical approaches. The IFA is regarded as the gold standard. Some labs will test for ANA using immunoassay and then employ IFA to confirm positive or equivocal results.

An indirect fluorescent antibody is created by mixing a person's blood sample with cells attached to a slide. Autoantibodies in the blood bind to the cells and cause them to react. A fluorescent antibody reagent is used to treat the slide, which is then inspected under a microscope. The existence of fluorescence is observed, as well as the pattern of fluorescence.

Immunoassays—these procedures are frequently carried out using automated equipment, however they are less sensitive than IFA in identifying ANA.

Other laboratory tests linked to inflammation, such as the erythrocyte sedimentation rate and/or C-reactive protein, can be used to assess a person's risk of SLE or another autoimmune disease.

What do my ANA test results mean?

A positive ANA test indicates the presence of autoantibodies. This shows the presence of an autoimmune disease in someone who has signs and symptoms, but more testing is needed to make a definitive diagnosis.

Because ANA test results can be positive in persons who have no known autoimmune disease, they must be carefully assessed in conjunction with a person's indications and symptoms.

Because an ANA test can become positive before signs and symptoms of an autoimmune disease appear, determining the meaning of a positive ANA in a person who has no symptoms can take some time.

SLE is unlikely to be diagnosed with a negative ANA result. It is normally not required to repeat a negative ANA test right away; however, because autoimmune illnesses are episodic, it may be desirable to repeat the ANA test at a later date if symptoms persist.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: Apo A1 and B is a blood test that measures that amount of Apolipoprotein A1 and Apolipoprotein B in the blood’s serum along with the ratio between B/A1. This test is used to assess cardiovascular risk. Low levels of APO A1 are associated with Coronary Artery Disease (CAD) and are said to predict CAD better then triglycerides and HDL does.

Also Known As: Apo A1 and B Test, Apo A1 Test, Apo B Test, APOAB Test, Apolipoprotein B-100 Test, Apolipoprotein Evaluation Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: Fasting for 12 hours is required.

When are Apolipoprotein A1 and B tests ordered?

Apolipoprotein A-I and B, as well as other lipid tests, may be ordered as part of a screening to identify a person's risk of cardiovascular disease.

Apo A-I is a protein that plays a key function in lipid metabolism and is the most abundant protein in HDL, or "good cholesterol." Excess cholesterol in cells is removed by HDL, which transports it to the liver for recycling or elimination. Apo A-I levels tend to rise and fall with HDL levels, and apo A-I deficits are linked to an increased risk of CVD.

Apo B is a protein that plays a role in lipid metabolism and is the major protein component of lipoproteins including VLDL and LDL, popularly known as "bad cholesterol." Apo B concentrations are similar to LDL-C concentrations.

What does Apolipoprotein A1 and B blood tests check for?

Lipids are transported throughout the bloodstream by apolipoproteins, which mix with them. Lipoproteins are held together by apolipoproteins, which protect the water-repellent lipids at their core.

Lipoproteins are cholesterol or triglyceride-rich proteins that transport lipids throughout the body for cell absorption. HDL, on the other hand, is like an empty cab or taxi. It travels to the tissues to collect excess cholesterol before returning it to the liver. Cholesterol is either recycled for future use or eliminated in bile in the liver. The only mechanism for cells to get rid of excess cholesterol is by HDL reverse transport. It protects the arteries and, if enough HDL is present, it can even reverse the formation of fatty plaques, which are deposits caused by atherosclerosis and can contribute to cardiovascular disease.

Sticking with the taxi analogy, the driver is Apolipoprotein A. It permits HDL to be detected and bound by receptors in the liver at the end of the transport by activating the enzymes that load cholesterol from the tissues into HDL. Apolipoprotein A is divided into two types: apo A-I and apo A-II. Apo A-I has a higher prevalence than apo A-II. Apo A-I concentrations can be evaluated directly, and they tend to rise and fall in tandem with HDL levels. Deficiencies in apo A-I are linked to an increased risk of cardiovascular disease.

Chylomicrons are lipoprotein particles that transport dietary fats from the digestive system to tissue, primarily the liver, via the bloodstream. These dietary lipids are repackaged in the liver and combined with apo B-100 to create triglyceride-rich VLDL. This combo is similar to a taxi with a full load of passengers and apo B-100 as the driver. The taxi moves from place to place in the bloodstream, releasing one passenger at a time.

Triglycerides are removed from VLDL by an enzyme called lipoprotein lipase, which produces intermediate density lipoproteins first, then LDL. VLDL contains one molecule of apo B-100, which is kept as VLDL loses triglycerides and shrinks to become the cholesterol-rich LDL. Apo B-100 is detected by receptors on the surface of many different types of cells in the body. The absorption of cholesterol into cells is aided by these receptors.

LDL and apo B-100 transport cholesterol that is essential for cell membrane integrity, sex hormone generation, and steroid production. Excess LDL, on the other hand, can cause fatty deposits in artery walls, as well as blood vessel hardening and scarring. Atherosclerosis is a condition in which fatty deposits restrict blood arteries. The risk of a heart attack increases as the atherosclerotic process progresses.

LDL-C levels, which are typically ordered as part of a lipid profile, tend to mimic Apo B-100 levels. Many experts believe that apo B levels will eventually show to be a more accurate predictor of CVD risk than LDL-C. Others disagree, believing that vitamin B is only a modestly superior choice and that it should not be used on a regular basis. The clinical utility of apo B, as well as other developing cardiac risk markers including apo A-I, Lp(a), and hs-CRP, is still unknown.

Lab tests often ordered with Apolipoprotein A1 and B tests:

  • Cholesterol Total
  • HDL Cholesterol
  • LDL Cholesterol
  • Triglycerides
  • Lipid Panel
  • Lipoprotein (a)
  • Homocysteine
  • hs-CRP
  • Lipoprotein Fractionation, Ion Mobility

Conditions where Apolipoprotein A1 and B tests are recommended:

  • Cardiovascular Disease
  • Heart Attack
  • Stroke
  • Congestive Heart Failure
  • Angina

How does my health care provider use Apolipoprotein A1 and B tests?

An apo B/apo A-I ratio can be determined by ordering both an apo A-I and an apo B test. To assess the risk of developing CVD, this ratio is sometimes used instead of the total cholesterol/HDL ratio.

An apo A-I test may be ordered in the following situations:

Assist in the diagnosis of apo A-I deficiency caused by genetic or acquired diseases.

Assist those with a personal or family history of heart disease, high cholesterol, or triglycerides in their blood.

Keep track of how well lifestyle changes and lipid therapies are working.

An apo A-I test can be ordered in conjunction with an apo B test to determine the apo B/apo A-I ratio. This ratio is occasionally used instead of the total cholesterol/HDL ratio to assess the risk of developing CVD.

As an alternative to non-HDL-C, Apo B levels may be ordered to assess the success of lipid treatment.

An apo B test may be conducted in rare circumstances to assist determine a genetic issue that causes apo B overproduction or underproduction.

What do my Apolipoprotein A1 and B test results mean?

Low apo A-I levels are linked to low HDL levels and slowed elimination of excess cholesterol from the body. Low levels of apo A-I, as well as high levels of apo B, are linked to a higher risk of cardiovascular disease.

Deficiencies in apo A-I are caused by a number of hereditary diseases. Abnormal lipid levels, notably excessive amounts of low-density lipoprotein, are common in people with certain illnesses. They frequently have a higher rate of atherosclerosis. Low apo A-I levels are caused by several genetic diseases.

Raised apo B levels are linked to elevated LDL-C and non-HDL-C levels, and are linked to an increased risk of cardiovascular disease. Elevations may be caused by a high-fat diet and/or a reduction in LDL clearance from the blood.

A direct cause of abnormal apo B levels is some hereditary diseases. Familial combined hyperlipidemia, for example, is an inherited condition that causes excessive cholesterol and triglyceride levels in the blood. Apolipoprotein B deficiency, also known as Bassen-Kornzweig syndrome, is a relatively rare hereditary disorder that results in unusually low amounts of apo B.

A variety of underlying diseases and other factors might result in abnormal apo B levels.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: Apolipoprotein B is a blood test that measures that amount of Apolipoprotein B in the blood’s serum. This test is used to assess cardiovascular risk.

Also Known As: Apo B Test, Apolipoprotein B-100 Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is an Apolipoprotein B test ordered?

Apolipoprotein A-I and B, as well as other lipid tests, may be ordered as part of a screening to identify a person's risk of cardiovascular disease.

Apo B is a protein that plays a role in lipid metabolism and is the major protein component of lipoproteins including VLDL and LDL, popularly known as "bad cholesterol." Apo B concentrations are similar to LDL-C concentrations.

What does an Apolipoprotein B blood test check for?

Lipids are transported throughout the bloodstream by apolipoproteins, which mix with them. Lipoproteins are held together by apolipoproteins, which protect the water-repellent lipids at their core.

Lipoproteins are cholesterol or triglyceride-rich proteins that transport lipids throughout the body for cell absorption. HDL, on the other hand, is like an empty cab. It travels to the tissues to collect excess cholesterol before returning it to the liver. Cholesterol is either recycled for future use or eliminated in bile in the liver. The only mechanism for cells to get rid of excess cholesterol is by HDL reverse transport. It protects the arteries and, if enough HDL is present, it can even reverse the formation of fatty plaques, which are deposits caused by atherosclerosis and can contribute to cardiovascular disease.

Chylomicrons are lipoprotein particles that transport dietary fats from the digestive system to tissue, primarily the liver, via the bloodstream. These dietary lipids are repackaged in the liver and combined with apo B-100 to create triglyceride-rich VLDL. This combo is similar to a taxi with a full load of passengers and apo B-100 as the driver. The taxi moves from place to place in the bloodstream, releasing one passenger at a time.

Triglycerides are removed from VLDL by an enzyme called lipoprotein lipase, which produces intermediate density lipoproteins first, then LDL. VLDL contains one molecule of apo B-100, which is kept as VLDL loses triglycerides and shrinks to become the cholesterol-rich LDL. Apo B-100 is detected by receptors on the surface of many different types of cells in the body. The absorption of cholesterol into cells is aided by these receptors.

LDL and apo B-100 transport cholesterol that is essential for cell membrane integrity, sex hormone generation, and steroid production. Excess LDL, on the other hand, can cause fatty deposits in artery walls, as well as blood vessel hardening and scarring. Atherosclerosis is a condition in which fatty deposits restrict blood arteries. The risk of a heart attack increases as the atherosclerotic process progresses.

LDL-C levels, which are typically ordered as part of a lipid profile, tend to mimic Apo B-100 levels. Many experts believe that apo B levels will eventually show to be a more accurate predictor of CVD risk than LDL-C. Others disagree, believing that vitamin B is only a modestly superior choice and that it should not be used on a regular basis. The clinical utility of apo B, as well as other developing cardiac risk markers including apo A-I, Lp(a), and hs-CRP, is still unknown.

Lab tests often ordered with an Apolipoprotein B test:

  • Apolipoprotein A1
  • Cholesterol Total
  • HDL Cholesterol
  • LDL Cholesterol
  • Triglycerides
  • Lipid Panel
  • Lipoprotein (a)
  • Homocysteine
  • hs-CRP
  • Lipoprotein Fractionation, Ion Mobility

Conditions where an Apolipoprotein B test is recommended:

  • Cardiovascular Disease
  • Heart Attack
  • Stroke
  • Congestive Heart Failure
  • Angina

How does my health care provider use an Apolipoprotein B test?

An apo B/apo A-I ratio can be determined by ordering both an apo A-I and an apo B test. To assess the risk of developing CVD, this ratio is sometimes used instead of the total cholesterol/HDL ratio.

As an alternative to non-HDL-C, Apo B levels may be ordered to assess the success of lipid treatment.

An apo B test may be conducted in rare circumstances to assist determine a genetic issue that causes apo B overproduction or underproduction.

What do my Apolipoprotein B test results mean?

Raised apo B levels are linked to elevated LDL-C and non-HDL-C levels, and are linked to an increased risk of cardiovascular disease. Elevations may be caused by a high-fat diet and/or a reduction in LDL clearance from the blood.

A direct cause of abnormal apo B levels is some hereditary diseases. Familial combined hyperlipidemia, for example, is an inherited condition that causes excessive cholesterol and triglyceride levels in the blood. Apolipoprotein B deficiency, also known as Bassen-Kornzweig syndrome, is a relatively rare hereditary disorder that results in unusually low amounts of apo B.

A variety of underlying diseases and other factors might result in abnormal apo B levels.

Is apoB a heart disease risk factor? 
The markers of particle number, apoB, or LDL particle number were better at predicting the risk of heart disease than LDL-C.

There are two major forms of Apolipoprotein B, B-100 and B-48. B-100, synthesized in the liver, is the major protein in VLDL, IDL, and LDL cholesterol. B-48, synthesized in the intestines, is essential for the assembly and secretion of chylomicrons. Patients with increased concentrations of Apolipoprotein B are at increased risk of atherosclerosis.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


AST is widely distributed throughout the tissues with significant amounts being in the heart and liver. Lesser amounts are found in skeletal muscles, kidneys, pancreas, spleen, lungs, and brain. Injury to these tissues results in the release of the AST enzyme to general circulation. In myocardial infarction, serum AST may begin to rise within 6-8 hours after onset, peak within two days and return to normal by the fourth or fifth day post infarction. An increase in serum AST is also found with hepatitis, liver necrosis, cirrhosis, and liver metastasis.