Cushing Syndrome

Cushing Syndrome Lab Tests and health information

Is your cortisol level high?

Our lab tests can accurately measure your hormone levels to see if your body makes excess cortisol and if you have Cushing syndrome.

Cortisol is a hormone that your body produces naturally. However, if your cortisol levels are too high, it can cause serious health problems. High cortisol levels can cause many symptoms, including weight gain, stretch marks, and fatigue. It can also lead to high blood pressure and diabetes, depression, osteoporosis, and infertility due to this condition. If you're experiencing any of these symptoms, it may be time to get tested for Cushing Syndrome.

If you want to learn more about Cushing Syndrome and the lab tests that can help you, click on the title of the article below.

Cushing Syndrome and Lab Testing - What You Need to Know

If you're looking for answers about why your cortisol levels are so high and what to do next, we can help! We offer comprehensive testing services that will give you the information you need to decide your health. The best way to diagnose Cushing's Syndrome is through blood tests that measure your cortisol levels. Our lab testing is quick, easy and accurate, so you know exactly what's going on with your body.

The testing process is simple. Select from the lab tests listed below that are right for you, have your specimen collected at a local testing center, and review your test results typically in 1 to 2 days after your blood is collected. We'll notify you when they're ready, and you'll find everything you need in your private health portal. You can then share these results with your doctor or loved ones. 


Name Matches

Cushing Syndrome Panel

  • ACTH, Plasma
  • Complete Blood Count (CBC) with Differential and Platelets Blood Test
  • Comprehensive Metabolic Panel (CMP)
  • Cortisol, Free, 24-Hour Urine with Creatinine, LC/MS/MS
  • Cortisol, Total
  • Glucose Tolerance Test, 2 Specimens (75g) 

Cushing Syndrome Panel with Dexamethasone

  • ACTH, Plasma
  • Complete Blood Count (CBC) with Differential and Platelets Blood Test
  • Comprehensive Metabolic Panel (CMP)
  • Cortisol, Free, 24-Hour Urine with Creatinine, LC/MS/MS
  • Dexamethasone
  • Glucose Tolerance Test, 2 Specimens (75g) 
  • Cortisol, Total

Most Popular

Description: A cortisol test measures the amount of cortisol in the blood. These levels will start off high in the morning and throughout the say they become lower. At midnight they are typically at their lowest level. Someone who works a night shift or has an irregular sleep schedule may have a different pattern. This test can be used to determine Cushing's or Addison's Disease.

Also Known As: Cortisol AM Test, Cortisol Total Test, Cortisol Test, Cortisol Blood Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: Specimen must be drawn between 7 a.m. and 9 a.m. Test is not recommended for patients receiving prednisone/prednisolone therapy due to cross reactivity with the antibody used in this test.

When is a Cortisol AM test ordered?

When a person has symptoms that point to a high level of cortisol and Cushing syndrome, a cortisol test may be recommended.

Women with irregular menstrual periods and increased facial hair may be tested, and children with delayed development and small stature may also be tested.

When someone exhibits symptoms that point to a low cortisol level, adrenal insufficiency, or Addison disease, this test may be ordered.

What does a Cortisol AM blood test check for?

Cortisol is a hormone that plays a function in protein, lipid, and carbohydrate metabolism. It has an effect on blood glucose levels, blood pressure, and immune system regulation. Only a small fraction of cortisol in the blood is "free" and biologically active; the majority is attached to a protein. Cortisol is a hormone that is produced into the urine and found in the saliva. This test determines how much cortisol is present in the blood, urine, or saliva.

Cortisol levels in the blood usually rise and fall in a pattern known as "diurnal variation." It reaches its highest point early in the morning, then gradually decreases over the day, reaching its lowest point around midnight. When a person works irregular shifts and sleeps at different times of the day, this rhythm might fluctuate, and it can be disrupted when a disease or condition inhibits or stimulates cortisol production.

The adrenal glands, two triangle organs that sit on top of the kidneys, generate and emit cortisol. The hypothalamus in the brain and the pituitary gland, a small organ below the brain, control the hormone's production. The hypothalamus produces corticotropin-releasing hormone when blood cortisol levels drop, which tells the pituitary gland to create ACTH. The adrenal glands are stimulated by ACTH to generate and release cortisol. A certain amount of cortisol must be produced for normal adrenal, pituitary gland, and brain function.

Cushing syndrome is a collection of signs and symptoms associated with an unusually high cortisol level. Cortisol production may be increased as a result of:

  • Large doses of glucocorticosteroid hormones are given to treat a range of ailments, including autoimmune illness and certain cancers.
  • Tumors that produce ACTH in the pituitary gland and/or other regions of the body.
  • Cortisol production by the adrenal glands is increased as a result of a tumor or abnormal expansion of adrenal tissues.

Rarely, CRH-producing malignancies in various regions of the body.

Cortisol production may be reduced as a result of:

  • Secondary adrenal insufficiency is caused by an underactive pituitary gland or a pituitary gland tumor that prevents ACTH production.
  • Primary adrenal insufficiency, often known as Addison disease, is characterized by underactive or injured adrenal glands that limit cortisol production.

After quitting glucocorticosteroid hormone medication, especially if it was abruptly stopped after a long time of use.

Lab tests often ordered with a Cortisol AM test:

  • Cortisol PM
  • ACTH
  • Aldosterone
  • 17-Hydroxyprogesterone
  • Growth Hormone

Conditions where a Cortisol AM test is recommended:

  • Addison’s Disease
  • Cushing’s Syndrome
  • Endocrine Syndromes
  • Hypertension
  • Pituitary Disorders

How does my health care provider use a Cortisol AM test?

A cortisol test can be used to detect Cushing syndrome, which is characterized by an excess of cortisol, as well as adrenal insufficiency or Addison disease, which are characterized by a deficiency of cortisol. Among other things, the hormone cortisol controls how proteins, lipids, and carbohydrates are metabolized. Cortisol levels in the blood normally increase and fall in a "diurnal variation" pattern, rising early in the morning, dropping during the day, and reaching their lowest point around midnight.

The adrenal glands generate and excrete cortisol. The hypothalamus in the brain and the pituitary gland, a small organ below the brain, control the hormone's production. The hypothalamus produces corticotropin-releasing hormone when blood cortisol levels drop, which tells the pituitary gland to create ACTH. Cortisol production and release are triggered by ACTH in the adrenal glands. A certain amount of cortisol must be produced for normal brain, pituitary, and adrenal gland function.

Only a small fraction of cortisol in the blood is "free" and biologically active; the majority is attached to a protein. Blood cortisol testing assesses both protein-bound and free cortisol, but urine and saliva cortisol testing assesses only free cortisol, which should be in line with blood cortisol levels. Multiple blood and/or saliva cortisol levels collected at various times, such as 8 a.m. and 4 p.m., can be used to assess cortisol levels and diurnal variation. A 24-hour urine cortisol sample will not reveal diurnal variations; instead, it will assess the total quantity of unbound cortisol voided over the course of 24 hours.

If an elevated amount of cortisol is found, a health professional will conduct additional tests to confirm the results and discover the cause.

If a person's blood cortisol level is abnormally high, a doctor may order additional tests to be sure the high cortisol is indeed abnormal. Additional testing could involve monitoring 24-hour urinary cortisol, doing an overnight dexamethasone suppression test, and/or obtaining a salivary sample before sleep to detect cortisol at its lowest level. Urinary cortisol testing necessitates collecting urine over a set length of time, usually 24 hours. Because ACTH is released in pulses by the pituitary gland, this test can assist evaluate whether a raised blood cortisol level is a true rise.

An ACTH stimulation test may be ordered if a health practitioner feels that the adrenal glands are not releasing enough cortisol or if initial blood tests reveal insufficient cortisol production.

The purpose of ACTH stimulation is to compare the levels of cortisol in a person's blood before and after receiving an injection of synthetic ACTH. If the adrenal glands are healthy, the reaction to ACTH stimulation will be an increase in cortisol levels. Low amounts of cortisol will result if they are broken or not functioning properly. To distinguish between adrenal and pituitary insufficiency, a lengthier variant of this test can be used.

What do my Cortisol AM test results mean?

Cortisol levels are typically lowest before bedtime and highest shortly after awakening, though this pattern can be disrupted if a person works rotating shifts and sleeps at various times on separate days.

Excess cortisol and Cushing syndrome are indicated by an increased or normal cortisol level shortly after awakening, as well as a level that does not diminish by bedtime. If the excess cortisol is not suppressed after an overnight dexamethasone suppression test, the 24-hour urine cortisol is elevated, or the late-night salivary cortisol level is elevated, the excess cortisol is likely due to abnormal increased ACTH production by the pituitary or a tumor outside of the pituitary, or abnormal production by the adrenal glands. Additional tests will aid in determining the root of the problem.

If the subject of the examination reacts to an ACTH stimulation test and has insufficient cortisol levels, the issue is most likely brought on by the pituitary's insufficient production of ACTH. The adrenal glands are most likely the source of the issue if the subject does not react to the ACTH stimulation test.

 

An additional test, like as a CT scan, may be used by the medical professional to evaluate the degree of any gland damage once an irregularity has been identified and related to the pituitary gland, the adrenal glands, or another cause.

Important: Patient needs to have the specimen collected between 7 a.m.-9 a.m.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Most Popular

Description: A cortisol test measures the amount of cortisol in the blood. These levels will start off high in the morning and throughout the say they become lower. At midnight they are typically at their lowest level. Someone who works a night shift or has an irregular sleep schedule may have a different pattern. This test can be used to determine Cushing's or Addison's Disease.

Also Known As: Cortisol Total Test, Cortisol Test, Cortisol Blood Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: Test not recommended when patient is on prednisone/prednisolone therapy due to cross reactivity with the antibody used in this test

When is a Cortisol Total test ordered?

When a person has symptoms that point to a high level of cortisol and Cushing syndrome, a cortisol test may be recommended.

Women with irregular menstrual periods and increased facial hair may be tested, and children with delayed development and small stature may also be tested.

When someone exhibits symptoms that point to a low cortisol level, adrenal insufficiency, or Addison disease, this test may be ordered.

What does a Cortisol Total blood test check for?

Cortisol is a hormone that plays a function in protein, lipid, and carbohydrate metabolism. It has an effect on blood glucose levels, blood pressure, and immune system regulation. Only a small fraction of cortisol in the blood is "free" and biologically active; the majority is attached to a protein. Cortisol is a hormone that is produced into the urine and found in the saliva. This test determines how much cortisol is present in the blood, urine, or saliva.

Cortisol levels in the blood usually rise and fall in a pattern known as "diurnal variation." It reaches its highest point early in the morning, then gradually decreases over the day, reaching its lowest point around midnight. When a person works irregular shifts and sleeps at different times of the day, this rhythm might fluctuate, and it can be disrupted when a disease or condition inhibits or stimulates cortisol production.

The adrenal glands, two triangle organs that sit on top of the kidneys, generate and emit cortisol. The hypothalamus in the brain and the pituitary gland, a small organ below the brain, control the hormone's production. The hypothalamus produces corticotropin-releasing hormone when blood cortisol levels drop, which tells the pituitary gland to create ACTH. The adrenal glands are stimulated by ACTH to generate and release cortisol. The brain, pituitary, and adrenal glands must all be operating properly in order to produce enough levels of cortisol.

Cushing syndrome is a collection of signs and symptoms associated with an unusually high cortisol level. Cortisol production may be increased as a result of:

  • Large doses of glucocorticosteroid hormones are given to treat a range of ailments, including autoimmune illness and certain cancers.
  • Tumors that produce ACTH in the pituitary gland and/or other regions of the body.
  • Cortisol production by the adrenal glands is increased as a result of a tumor or abnormal expansion of adrenal tissues.

Rarely, CRH-producing malignancies in various regions of the body.

Cortisol production may be reduced as a result of:

  • Secondary adrenal insufficiency is caused by an underactive pituitary gland or a pituitary gland tumor that prevents ACTH production.
  • Primary adrenal insufficiency, often known as Addison disease, is characterized by underactive or injured adrenal glands that limit cortisol production.

After quitting glucocorticosteroid hormone medication, especially if it was abruptly stopped after a long time of use.

Lab tests often ordered with a Cortisol Total test:

  • Cortisol PM
  • Cortisol AM
  • Cortisol Saliva
  • ACTH
  • Aldosterone
  • 17-Hydroxyprogesterone
  • Growth Hormone

Conditions where a Cortisol Test is recommended:

  • Addison’s Disease
  • Cushing’s Syndrome
  • Endocrine Syndromes
  • Hypertension
  • Pituitary Disorders

How does my health care provider use a Cortisol Total test?

A cortisol test can be used to detect Cushing syndrome, which is characterized by an excess of cortisol, as well as adrenal insufficiency or Addison disease, which are characterized by a deficiency of cortisol. Cortisol is a hormone that regulates protein, lipid, and carbohydrate metabolism, among other functions. Cortisol levels in the blood normally increase and fall in a "diurnal variation" pattern, rising early in the morning, dropping during the day, and reaching their lowest point around midnight.

The adrenal glands generate and excrete cortisol. The hypothalamus in the brain and the pituitary gland, a small organ below the brain, control the hormone's production. The hypothalamus produces corticotropin-releasing hormone when blood cortisol levels drop, which tells the pituitary gland to create ACTH. The adrenal glands are stimulated by ACTH to generate and release cortisol. The brain, pituitary, and adrenal glands must all be operating properly in order to produce enough levels of cortisol.

Only a small fraction of cortisol in the blood is "free" and biologically active; the majority is attached to a protein. Blood cortisol testing assesses both protein-bound and free cortisol, but urine and saliva cortisol testing assesses only free cortisol, which should be in line with blood cortisol levels. Multiple blood and/or saliva cortisol levels collected at various times, such as 8 a.m. and 4 p.m., can be used to assess cortisol levels and diurnal variation. A 24-hour urine cortisol sample will not reveal diurnal variations; instead, it will assess the total quantity of unbound cortisol voided over the course of 24 hours.

If an elevated amount of cortisol is found, a health professional will conduct additional tests to confirm the results and discover the cause.

If a person's blood cortisol level is abnormally high, a doctor may order additional tests to be sure the high cortisol is indeed abnormal. Additional testing could involve monitoring 24-hour urinary cortisol, doing an overnight dexamethasone suppression test, and/or obtaining a salivary sample before sleep to detect cortisol at its lowest level. Urinary cortisol testing necessitates collecting urine over a set length of time, usually 24 hours. Because ACTH is released in pulses by the pituitary gland, this test can assist evaluate whether a raised blood cortisol level is a true rise.

An ACTH stimulation test may be ordered if a health practitioner feels that the adrenal glands are not releasing enough cortisol or if initial blood tests reveal insufficient cortisol production.

ACTH stimulation is a test that measures the amount of cortisol in a person's blood before and after a synthetic ACTH injection. Cortisol levels will rise in response to ACTH stimulation if the adrenal glands are functioning normally. Cortisol levels will be low if they are damaged or not working properly. To distinguish between adrenal and pituitary insufficiency, a lengthier variant of this test can be used.

What do my Cortisol Total test results mean?

Cortisol levels are typically lowest before bedtime and highest shortly after awakening, though this pattern can be disrupted if a person works rotating shifts and sleeps at various times on separate days.

Excess cortisol and Cushing syndrome are indicated by an increased or normal cortisol level shortly after awakening, as well as a level that does not diminish by bedtime. If the excess cortisol is not suppressed after an overnight dexamethasone suppression test, the 24-hour urine cortisol is elevated, or the late-night salivary cortisol level is elevated, the excess cortisol is likely due to abnormal increased ACTH production by the pituitary or a tumor outside of the pituitary, or abnormal production by the adrenal glands. Additional tests will aid in determining the root of the problem.

If the person examined responds to an ACTH stimulation test and has insufficient cortisol, the problem is most likely due to insufficient ACTH production by the pituitary. If the person does not respond to the ACTH stimulation test, the problem is most likely to be with the adrenal glands. Secondary adrenal insufficiency occurs when the adrenal glands are underactive as a result of pituitary dysfunction and/or insufficient ACTH synthesis. Adrenal injury causes decreased cortisol production, which is referred to as primary adrenal insufficiency or Addison disease.

Once an irregularity has been found and linked to the pituitary gland, adrenal glands, or another source, the health practitioner may utilize additional testing, such as a CT scan, to determine the extent of any gland damage.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: A cortisol test measures the amount of cortisol your body. These levels will start off high in the morning and throughout the say they become lower. At midnight they are typically at their lowest level. Someone who works a night shift or has an irregular sleep schedule may have a different pattern. This test can be used to determine Cushing's or Addison's Disease.

Also Known As: Cortisol Total Test, Cortisol Saliva Test, Cortisol 4 Specimen Test, 4 Specimen Cortisol Test, Cortisol Free Test, Cortisol Kit Test

Collection Method: Saliva Collection Kit. [For instructions, scroll down to the bottom]

Specimen Type: Saliva

Test Preparation: No preparation required

When is a Cortisol 4 Sample test ordered?

When a person has symptoms that point to a high level of cortisol and Cushing syndrome, a cortisol test may be recommended.

Women with irregular menstrual periods and increased facial hair may be tested, and children with delayed development and small stature may also be tested.

When someone exhibits symptoms that point to a low cortisol level, adrenal insufficiency, or Addison disease, this test may be ordered.

What does a Cortisol 4 Sample Saliva test check for?

Cortisol is a hormone that plays a function in protein, lipid, and carbohydrate metabolism. It has an effect on blood glucose levels, blood pressure, and immune system regulation. Only a small fraction of cortisol in the blood is "free" and biologically active; the majority is attached to a protein. Cortisol is a hormone that is produced into the urine and found in the saliva. This test determines how much cortisol is present in the blood, urine, or saliva.

Cortisol levels in the blood usually rise and fall in a pattern known as "diurnal variation." It reaches its highest point early in the morning, then gradually decreases over the day, reaching its lowest point around midnight. When a person works irregular shifts and sleeps at different times of the day, this rhythm might fluctuate, and it can be disrupted when a disease or condition inhibits or stimulates cortisol production.

The adrenal glands, two triangle organs that sit on top of the kidneys, generate and emit cortisol. The hypothalamus in the brain and the pituitary gland, a small organ below the brain, control the hormone's production. The hypothalamus produces corticotropin-releasing hormone when blood cortisol levels drop, which tells the pituitary gland to create ACTH. The adrenal glands are stimulated by ACTH to generate and release cortisol. The brain, pituitary, and adrenal glands must all be operating properly in order to produce enough levels of cortisol.

Cushing syndrome is a collection of signs and symptoms associated with an unusually high cortisol level. Cortisol production may be increased as a result of:

  • Large doses of glucocorticosteroid hormones are given to treat a range of ailments, including autoimmune illness and certain cancers.
  • Tumors that produce ACTH in the pituitary gland and/or other regions of the body.
  • Cortisol production by the adrenal glands is increased as a result of a tumor or abnormal expansion of adrenal tissues.

Rarely, CRH-producing malignancies in various regions of the body.

Cortisol production may be reduced as a result of:

  • Secondary adrenal insufficiency is caused by an underactive pituitary gland or a pituitary gland tumor that prevents ACTH production.
  • Primary adrenal insufficiency, often known as Addison disease, is characterized by underactive or injured adrenal glands that limit cortisol production.

After quitting glucocorticosteroid hormone medication, especially if it was abruptly stopped after a long time of use.

Lab tests often ordered with a Cortisol 4 Sample Saliva test:

  • Cortisol PM
  • Cortisol AM
  • Cortisol Total
  • ACTH
  • Aldosterone
  • 17-Hydroxyprogesterone
  • Growth Hormone

Conditions where a Cortisol 4 Sample test is recommended:

  • Addison’s Disease
  • Cushing’s Syndrome
  • Endocrine Syndromes
  • Hypertension
  • Pituitary Disorders

How does my health care provider use a Cortisol 4 Sample test?

A cortisol test can be used to detect Cushing syndrome, which is characterized by an excess of cortisol, as well as adrenal insufficiency or Addison disease, which are characterized by a deficiency of cortisol. Cortisol is a hormone that regulates protein, lipid, and carbohydrate metabolism, among other functions. Cortisol levels in the blood normally increase and fall in a "diurnal variation" pattern, rising early in the morning, dropping during the day, and reaching their lowest point around midnight.

The adrenal glands generate and excrete cortisol. The hypothalamus in the brain and the pituitary gland, a small organ below the brain, control the hormone's production. The hypothalamus produces corticotropin-releasing hormone when blood cortisol levels drop, which tells the pituitary gland to create ACTH. The adrenal glands are stimulated by ACTH to generate and release cortisol. The brain, pituitary, and adrenal glands must all be operating properly in order to produce enough levels of cortisol.

Only a small fraction of cortisol in the blood is "free" and biologically active; the majority is attached to a protein. Blood cortisol testing assesses both protein-bound and free cortisol, but urine and saliva cortisol testing assesses only free cortisol, which should be in line with blood cortisol levels. Multiple blood and/or saliva cortisol levels collected at various times, such as 8 a.m. and 4 p.m., can be used to assess cortisol levels and diurnal variation. A 24-hour urine cortisol sample will not reveal diurnal variations; instead, it will assess the total quantity of unbound cortisol voided over the course of 24 hours.

If an elevated amount of cortisol is found, a health professional will conduct additional tests to confirm the results and discover the cause.

If a person's blood cortisol level is abnormally high, a doctor may order additional tests to be sure the high cortisol is indeed abnormal. Additional testing could involve monitoring 24-hour urinary cortisol, doing an overnight dexamethasone suppression test, and/or obtaining a salivary sample before sleep to detect cortisol at its lowest level. Urinary cortisol testing necessitates collecting urine over a set length of time, usually 24 hours. Because ACTH is released in pulses by the pituitary gland, this test can assist evaluate whether a raised blood cortisol level is a true rise.

An ACTH stimulation test may be ordered if a health practitioner feels that the adrenal glands are not releasing enough cortisol or if initial blood tests reveal insufficient cortisol production.

ACTH stimulation is a test that measures the amount of cortisol in a person's blood before and after a synthetic ACTH injection. Cortisol levels will rise in response to ACTH stimulation if the adrenal glands are functioning normally. Cortisol levels will be low if they are damaged or not working properly. To distinguish between adrenal and pituitary insufficiency, a lengthier variant of this test can be used.

What do my Cortisol test results mean?

Cortisol levels are typically lowest before bedtime and highest shortly after awakening, though this pattern can be disrupted if a person works rotating shifts and sleeps at various times on separate days.

Excess cortisol and Cushing syndrome are indicated by an increased or normal cortisol level shortly after awakening, as well as a level that does not diminish by bedtime. If the excess cortisol is not suppressed after an overnight dexamethasone suppression test, the 24-hour urine cortisol is elevated, or the late-night salivary cortisol level is elevated, the excess cortisol is likely due to abnormal increased ACTH production by the pituitary or a tumor outside of the pituitary, or abnormal production by the adrenal glands. Additional tests will aid in determining the root of the problem.

If the person examined responds to an ACTH stimulation test and has insufficient cortisol, the problem is most likely due to insufficient ACTH production by the pituitary. If the person does not respond to the ACTH stimulation test, the problem is most likely to be with the adrenal glands. Secondary adrenal insufficiency occurs when the adrenal glands are underactive as a result of pituitary dysfunction and/or insufficient ACTH synthesis. Adrenal injury causes decreased cortisol production, which is referred to as primary adrenal insufficiency or Addison disease.

Once an irregularity has been found and linked to the pituitary gland, adrenal glands, or another source, the health practitioner may utilize additional testing, such as a CT scan, to determine the extent of any gland damage.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.

Cortisol, LC/MS/MS, Saliva Collection Kit

  1. Pick up the Cortisol, LC/MS/MS, Saliva Collection Kit from the Patient Service Center that is selected when placing the order.

Collection Instructions

  1.  Remove the swab from the Salivette.
  2. Follow times to collect as told by your physician
    a. Place the swab in the mouth, e.g. in your cheek, where it should remain for 2 minutes without chewing. If an extremely small amount of saliva is produced, leave the swab in the mouth for longer.

b. Return the swab with the absorbed saliva to the Salivette.
c. Replace the stopper.

  1. Label each saliva collection tube with the following information

              a. patient name

              b. date of birth (DOB)

              c. date and time of collection

Refrigerate the Salivette immediately after collection

Return Collected Samples & Patient Requisition Directly to Patient Service Center within 48hrs of collection

Storage instructions

  1. Specimen should be stored at refrigerated temperature prior to returning to the Patient Service Center .
  2. Do not use this kit on children under 3 years of age or any patient with increased risk of swallowing or choking.

Urinary Free Cortisol is useful in the detection of patients with Cushing's syndrome for whom Free Cortisol concentrations are elevated.

Most Popular

Description: A cortisol test measures the amount of cortisol in the blood. These levels will start off high in the morning and throughout the say they become lower. At midnight they are typically at their lowest level. Someone who works a night shift or has an irregular sleep schedule may have a different pattern. This test can be used to determine Cushing's or Addison's Disease.

Also Known As: Cortisol PM Test, Cortisol Total Test, Cortisol Test, Cortisol Blood Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: Must be drawn between 3 and 5 p.m.

When is Cortisol PM test ordered?

When a person has symptoms that point to a high level of cortisol and Cushing syndrome, a cortisol test may be recommended.

Women with irregular menstrual periods and increased facial hair may be tested, and children with delayed development and small stature may also be tested.

When someone exhibits symptoms that point to a low cortisol level, adrenal insufficiency, or Addison disease, this test may be ordered.

What does a Cortisol PM blood test check for?

Cortisol is a hormone that plays a function in protein, lipid, and carbohydrate metabolism. It has an effect on blood glucose levels, blood pressure, and immune system regulation. Only a small fraction of cortisol in the blood is "free" and biologically active; the majority is attached to a protein. Cortisol is a hormone that is produced into the urine and found in the saliva. This test determines how much cortisol is present in the blood, urine, or saliva.

Cortisol levels in the blood usually rise and fall in a pattern known as "diurnal variation." It reaches its highest point early in the morning, then gradually decreases over the day, reaching its lowest point around midnight. When a person works irregular shifts and sleeps at different times of the day, this rhythm might fluctuate, and it can be disrupted when a disease or condition inhibits or stimulates cortisol production.

The adrenal glands, two triangle organs that sit on top of the kidneys, generate and emit cortisol. The hypothalamus in the brain and the pituitary gland, a small organ below the brain, control the hormone's production. The hypothalamus produces corticotropin-releasing hormone when blood cortisol levels drop, which tells the pituitary gland to create ACTH. The adrenal glands are stimulated by ACTH to generate and release cortisol. The brain, pituitary, and adrenal glands must all be operating properly in order to produce enough levels of cortisol.

Cushing syndrome is a collection of signs and symptoms associated with an unusually high cortisol level. Cortisol production may be increased as a result of:

  • Large doses of glucocorticosteroid hormones are given to treat a range of ailments, including autoimmune illness and certain cancers.
  • Tumors that produce ACTH in the pituitary gland and/or other regions of the body.
  • Cortisol production by the adrenal glands is increased as a result of a tumor or abnormal expansion of adrenal tissues.

Rarely, CRH-producing malignancies in various regions of the body.

Cortisol production may be reduced as a result of:

  • Secondary adrenal insufficiency is caused by an underactive pituitary gland or a pituitary gland tumor that prevents ACTH production.
  • Primary adrenal insufficiency, often known as Addison disease, is characterized by underactive or injured adrenal glands that limit cortisol production.

After quitting glucocorticosteroid hormone medication, especially if it was abruptly stopped after a long time of use.

Lab tests often ordered with a Cortisol PM test:

  • Cortisol Total
  • Cortisol AM
  • Cortisol Saliva
  • ACTH
  • Aldosterone
  • 17-Hydroxyprogesterone
  • Growth Hormone

Conditions where a Cortisol PM test is recommended:

  • Addison’s Disease
  • Cushing’s Syndrome
  • Endocrine Syndromes
  • Hypertension
  • Pituitary Disorders

How does my health care provider use a Cortisol PM test?

A cortisol test can be used to detect Cushing syndrome, which is characterized by an excess of cortisol, as well as adrenal insufficiency or Addison disease, which are characterized by a deficiency of cortisol. Cortisol is a hormone that regulates protein, lipid, and carbohydrate metabolism, among other functions. Cortisol levels in the blood normally increase and fall in a "diurnal variation" pattern, rising early in the morning, dropping during the day, and reaching their lowest point around midnight.

The adrenal glands generate and excrete cortisol. The hypothalamus in the brain and the pituitary gland, a small organ below the brain, control the hormone's production. The hypothalamus produces corticotropin-releasing hormone when blood cortisol levels drop, which tells the pituitary gland to create ACTH. The adrenal glands are stimulated by ACTH to generate and release cortisol. The brain, pituitary, and adrenal glands must all be operating properly in order to produce enough levels of cortisol.

Only a small fraction of cortisol in the blood is "free" and biologically active; the majority is attached to a protein. Blood cortisol testing assesses both protein-bound and free cortisol, but urine and saliva cortisol testing assesses only free cortisol, which should be in line with blood cortisol levels. Multiple blood and/or saliva cortisol levels collected at various times, such as 8 a.m. and 4 p.m., can be used to assess cortisol levels and diurnal variation. A 24-hour urine cortisol sample will not reveal diurnal variations; instead, it will assess the total quantity of unbound cortisol voided over the course of 24 hours.

If an elevated amount of cortisol is found, a health professional will conduct additional tests to confirm the results and discover the cause.

If a person's blood cortisol level is abnormally high, a doctor may order additional tests to be sure the high cortisol is indeed abnormal. Additional testing could involve monitoring 24-hour urinary cortisol, doing an overnight dexamethasone suppression test, and/or obtaining a salivary sample before sleep to detect cortisol at its lowest level. Urinary cortisol testing necessitates collecting urine over a set length of time, usually 24 hours. Because ACTH is released in pulses by the pituitary gland, this test can assist evaluate whether a raised blood cortisol level is a true rise.

An ACTH stimulation test may be ordered if a health practitioner feels that the adrenal glands are not releasing enough cortisol or if initial blood tests reveal insufficient cortisol production.

ACTH stimulation is a test that measures the amount of cortisol in a person's blood before and after a synthetic ACTH injection. Cortisol levels will rise in response to ACTH stimulation if the adrenal glands are functioning normally. Cortisol levels will be low if they are damaged or not working properly. To distinguish between adrenal and pituitary insufficiency, a lengthier variant of this test can be used.

What do my Cortisol PM test results mean?

Cortisol levels are typically lowest before bedtime and highest shortly after awakening, though this pattern can be disrupted if a person works rotating shifts and sleeps at various times on separate days.

Excess cortisol and Cushing syndrome are indicated by an increased or normal cortisol level shortly after awakening, as well as a level that does not diminish by bedtime. If the excess cortisol is not suppressed after an overnight dexamethasone suppression test, the 24-hour urine cortisol is elevated, or the late-night salivary cortisol level is elevated, the excess cortisol is likely due to abnormal increased ACTH production by the pituitary or a tumor outside of the pituitary, or abnormal production by the adrenal glands. Additional tests will aid in determining the root of the problem.

If the person examined responds to an ACTH stimulation test and has insufficient cortisol, the problem is most likely due to insufficient ACTH production by the pituitary. If the person does not respond to the ACTH stimulation test, the problem is most likely to be with the adrenal glands. Secondary adrenal insufficiency occurs when the adrenal glands are underactive as a result of pituitary dysfunction and/or insufficient ACTH synthesis. Adrenal injury causes decreased cortisol production, which is referred to as primary adrenal insufficiency or Addison disease.

Once an irregularity has been found and linked to the pituitary gland, adrenal glands, or another source, the health practitioner may utilize additional testing, such as a CT scan, to determine the extent of any gland damage.

Patient needs to have the specimen collected between 3 p.m - 5 p.m.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: A cortisol test measures the amount of cortisol in the blood. These levels will start off high in the morning and throughout the say they become lower. At midnight they are typically at their lowest level. Someone who works a night shift or has an irregular sleep schedule may have a different pattern. This test can be used to determine Cushing's or Addison's Disease.

Also Known As: Cortisol Total Test, Cortisol 2 Specimen Test, 2 Specimen Cortisol Test, Cortisol Blood Test, Cortisol Serum Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is a Cortisol 2 Specimen test ordered?

When a person has symptoms that point to a high level of cortisol and Cushing syndrome, a cortisol test may be recommended.

Women with irregular menstrual periods and increased facial hair may be tested, and children with delayed development and small stature may also be tested.

When someone exhibits symptoms that point to a low cortisol level, adrenal insufficiency, or Addison disease, this test may be ordered.

What does a Cortisol 2 Specimen blood test check for?

Cortisol is a hormone that plays a function in protein, lipid, and carbohydrate metabolism. It has an effect on blood glucose levels, blood pressure, and immune system regulation. Only a small fraction of cortisol in the blood is "free" and biologically active; the majority is attached to a protein. Cortisol is a hormone that is produced into the urine and found in the saliva. This test determines how much cortisol is present in the blood, urine, or saliva.

Cortisol levels in the blood usually rise and fall in a pattern known as "diurnal variation." It reaches its highest point early in the morning, then gradually decreases over the day, reaching its lowest point around midnight. When a person works irregular shifts and sleeps at different times of the day, this rhythm might fluctuate, and it can be disrupted when a disease or condition inhibits or stimulates cortisol production.

The adrenal glands, two triangle organs that sit on top of the kidneys, generate and emit cortisol. The hypothalamus in the brain and the pituitary gland, a small organ below the brain, control the hormone's production. The hypothalamus produces corticotropin-releasing hormone when blood cortisol levels drop, which tells the pituitary gland to create ACTH. The adrenal glands are stimulated by ACTH to generate and release cortisol. The brain, pituitary, and adrenal glands must all be operating properly in order to produce enough levels of cortisol.

Cushing syndrome is a collection of signs and symptoms associated with an unusually high cortisol level. Cortisol production may be increased as a result of:

  • Large doses of glucocorticosteroid hormones are given to treat a range of ailments, including autoimmune illness and certain cancers.
  • Tumors that produce ACTH in the pituitary gland and/or other regions of the body.
  • Cortisol production by the adrenal glands is increased as a result of a tumor or abnormal expansion of adrenal tissues.

Rarely, CRH-producing malignancies in various regions of the body.

Cortisol production may be reduced as a result of:

  • Secondary adrenal insufficiency is caused by an underactive pituitary gland or a pituitary gland tumor that prevents ACTH production.
  • Primary adrenal insufficiency, often known as Addison disease, is characterized by underactive or injured adrenal glands that limit cortisol production.

After quitting glucocorticosteroid hormone medication, especially if it was abruptly stopped after a long time of use.

Lab tests often ordered with a Cortisol 2 Specimen test:

  • Cortisol Saliva
  • ACTH
  • Aldosterone
  • 17-Hydroxyprogesterone
  • Growth Hormone

Conditions where a Cortisol 2 Specimen test is recommended:

  • Addison’s Disease
  • Cushing’s Syndrome
  • Endocrine Syndromes
  • Hypertension
  • Pituitary Disorders

How does my health care provider use a Cortisol 2 Specimen test?

A cortisol test can be used to detect Cushing syndrome, which is characterized by an excess of cortisol, as well as adrenal insufficiency or Addison disease, which are characterized by a deficiency of cortisol. Cortisol is a hormone that regulates protein, lipid, and carbohydrate metabolism, among other functions. Cortisol levels in the blood normally increase and fall in a "diurnal variation" pattern, rising early in the morning, dropping during the day, and reaching their lowest point around midnight.

The adrenal glands generate and excrete cortisol. The hypothalamus in the brain and the pituitary gland, a small organ below the brain, control the hormone's production. The hypothalamus produces corticotropin-releasing hormone when blood cortisol levels drop, which tells the pituitary gland to create ACTH. The adrenal glands are stimulated by ACTH to generate and release cortisol. The brain, pituitary, and adrenal glands must all be operating properly in order to produce enough levels of cortisol.

Only a small fraction of cortisol in the blood is "free" and biologically active; the majority is attached to a protein. Blood cortisol testing assesses both protein-bound and free cortisol, but urine and saliva cortisol testing assesses only free cortisol, which should be in line with blood cortisol levels. Multiple blood and/or saliva cortisol levels collected at various times, such as 8 a.m. and 4 p.m., can be used to assess cortisol levels and diurnal variation. A 24-hour urine cortisol sample will not reveal diurnal variations; instead, it will assess the total quantity of unbound cortisol voided over the course of 24 hours.

If an elevated amount of cortisol is found, a health professional will conduct additional tests to confirm the results and discover the cause.

If a person's blood cortisol level is abnormally high, a doctor may order additional tests to be sure the high cortisol is indeed abnormal. Additional testing could involve monitoring 24-hour urinary cortisol, doing an overnight dexamethasone suppression test, and/or obtaining a salivary sample before sleep to detect cortisol at its lowest level. Urinary cortisol testing necessitates collecting urine over a set length of time, usually 24 hours. Because ACTH is released in pulses by the pituitary gland, this test can assist evaluate whether a raised blood cortisol level is a true rise.

An ACTH stimulation test may be ordered if a health practitioner feels that the adrenal glands are not releasing enough cortisol or if initial blood tests reveal insufficient cortisol production.

ACTH stimulation is a test that measures the amount of cortisol in a person's blood before and after a synthetic ACTH injection. Cortisol levels will rise in response to ACTH stimulation if the adrenal glands are functioning normally. Cortisol levels will be low if they are damaged or not working properly. To distinguish between adrenal and pituitary insufficiency, a lengthier variant of this test can be used.

What do my Cortisol Total test results mean?

Cortisol levels are typically lowest before bedtime and highest shortly after awakening, though this pattern can be disrupted if a person works rotating shifts and sleeps at various times on separate days.

Excess cortisol and Cushing syndrome are indicated by an increased or normal cortisol level shortly after awakening, as well as a level that does not diminish by bedtime. If the excess cortisol is not suppressed after an overnight dexamethasone suppression test, the 24-hour urine cortisol is elevated, or the late-night salivary cortisol level is elevated, the excess cortisol is likely due to abnormal increased ACTH production by the pituitary or a tumor outside of the pituitary, or abnormal production by the adrenal glands. Additional tests will aid in determining the root of the problem.

If the person examined responds to an ACTH stimulation test and has insufficient cortisol, the problem is most likely due to insufficient ACTH production by the pituitary. If the person does not respond to the ACTH stimulation test, the problem is most likely to be with the adrenal glands. Secondary adrenal insufficiency occurs when the adrenal glands are underactive as a result of pituitary dysfunction and/or insufficient ACTH synthesis. Adrenal injury causes decreased cortisol production, which is referred to as primary adrenal insufficiency or Addison disease.

Once an irregularity has been found and linked to the pituitary gland, adrenal glands, or another source, the health practitioner may utilize additional testing, such as a CT scan, to determine the extent of any gland damage.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: A cortisol test measures the amount of cortisol in the blood. These levels will start off high in the morning and throughout the say they become lower. At midnight they are typically at their lowest level. Someone who works a night shift or has an irregular sleep schedule may have a different pattern. This test can be used to determine Cushing's or Addison's Disease.

Also Known As: Cortisol Total Test, Cortisol 3 Specimen Test, 3 Specimen Cortisol Test, Cortisol Blood Test, Cortisol Serum Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is a Cortisol 3 Specimen test ordered?

When a person has symptoms that point to a high level of cortisol and Cushing syndrome, a cortisol test may be recommended.

Women with irregular menstrual periods and increased facial hair may be tested, and children with delayed development and small stature may also be tested.

When someone exhibits symptoms that point to a low cortisol level, adrenal insufficiency, or Addison disease, this test may be ordered.

What does a Cortisol 3 Specimen blood test check for?

Cortisol is a hormone that plays a function in protein, lipid, and carbohydrate metabolism. It has an effect on blood glucose levels, blood pressure, and immune system regulation. Only a small fraction of cortisol in the blood is "free" and biologically active; the majority is attached to a protein. Cortisol is a hormone that is produced into the urine and found in the saliva. This test determines how much cortisol is present in the blood, urine, or saliva.

Cortisol levels in the blood usually rise and fall in a pattern known as "diurnal variation." It reaches its highest point early in the morning, then gradually decreases over the day, reaching its lowest point around midnight. When a person works irregular shifts and sleeps at different times of the day, this rhythm might fluctuate, and it can be disrupted when a disease or condition inhibits or stimulates cortisol production.

The adrenal glands, two triangle organs that sit on top of the kidneys, generate and emit cortisol. The hypothalamus in the brain and the pituitary gland, a small organ below the brain, control the hormone's production. The hypothalamus produces corticotropin-releasing hormone when blood cortisol levels drop, which tells the pituitary gland to create ACTH. The adrenal glands are stimulated by ACTH to generate and release cortisol. The brain, pituitary, and adrenal glands must all be operating properly in order to produce enough levels of cortisol.

Cushing syndrome is a collection of signs and symptoms associated with an unusually high cortisol level. Cortisol production may be increased as a result of:

  • Large doses of glucocorticosteroid hormones are given to treat a range of ailments, including autoimmune illness and certain cancers.
  • Tumors that produce ACTH in the pituitary gland and/or other regions of the body.
  • Cortisol production by the adrenal glands is increased as a result of a tumor or abnormal expansion of adrenal tissues.

Rarely, CRH-producing malignancies in various regions of the body.

Cortisol production may be reduced as a result of:

  • Secondary adrenal insufficiency is caused by an underactive pituitary gland or a pituitary gland tumor that prevents ACTH production.
  • Primary adrenal insufficiency, often known as Addison disease, is characterized by underactive or injured adrenal glands that limit cortisol production.

After quitting glucocorticosteroid hormone medication, especially if it was abruptly stopped after a long time of use.

Lab tests often ordered with a Cortisol 3 Specimen test:

  • Cortisol Saliva
  • ACTH
  • Aldosterone
  • 17-Hydroxyprogesterone
  • Growth Hormone

Conditions where a Cortisol 3 Specimen test is recommended :

  • Addison’s Disease
  • Cushing’s Syndrome
  • Endocrine Syndromes
  • Hypertension
  • Pituitary Disorders

How does my health care provider use a Cortisol 3 Specimen test?

A cortisol test can be used to detect Cushing syndrome, which is characterized by an excess of cortisol, as well as adrenal insufficiency or Addison disease, which are characterized by a deficiency of cortisol. Cortisol is a hormone that regulates protein, lipid, and carbohydrate metabolism, among other functions. Cortisol levels in the blood normally increase and fall in a "diurnal variation" pattern, rising early in the morning, dropping during the day, and reaching their lowest point around midnight.

The adrenal glands generate and excrete cortisol. The hypothalamus in the brain and the pituitary gland, a small organ below the brain, control the hormone's production. The hypothalamus produces corticotropin-releasing hormone when blood cortisol levels drop, which tells the pituitary gland to create ACTH. The adrenal glands are stimulated by ACTH to generate and release cortisol. The brain, pituitary, and adrenal glands must all be operating properly in order to produce enough levels of cortisol.

Only a small fraction of cortisol in the blood is "free" and biologically active; the majority is attached to a protein. Blood cortisol testing assesses both protein-bound and free cortisol, but urine and saliva cortisol testing assesses only free cortisol, which should be in line with blood cortisol levels. Multiple blood and/or saliva cortisol levels collected at various times, such as 8 a.m. and 4 p.m., can be used to assess cortisol levels and diurnal variation. A 24-hour urine cortisol sample will not reveal diurnal variations; instead, it will assess the total quantity of unbound cortisol voided over the course of 24 hours.

If an elevated amount of cortisol is found, a health professional will conduct additional tests to confirm the results and discover the cause.

If a person's blood cortisol level is abnormally high, a doctor may order additional tests to be sure the high cortisol is indeed abnormal. Additional testing could involve monitoring 24-hour urinary cortisol, doing an overnight dexamethasone suppression test, and/or obtaining a salivary sample before sleep to detect cortisol at its lowest level. Urinary cortisol testing necessitates collecting urine over a set length of time, usually 24 hours. Because ACTH is released in pulses by the pituitary gland, this test can assist evaluate whether a raised blood cortisol level is a true rise.

An ACTH stimulation test may be ordered if a health practitioner feels that the adrenal glands are not releasing enough cortisol or if initial blood tests reveal insufficient cortisol production.

ACTH stimulation is a test that measures the amount of cortisol in a person's blood before and after a synthetic ACTH injection. Cortisol levels will rise in response to ACTH stimulation if the adrenal glands are functioning normally. Cortisol levels will be low if they are damaged or not working properly. To distinguish between adrenal and pituitary insufficiency, a lengthier variant of this test can be used.

What do my Cortisol Total test results mean?

Cortisol levels are typically lowest before bedtime and highest shortly after awakening, though this pattern can be disrupted if a person works rotating shifts and sleeps at various times on separate days.

Excess cortisol and Cushing syndrome are indicated by an increased or normal cortisol level shortly after awakening, as well as a level that does not diminish by bedtime. If the excess cortisol is not suppressed after an overnight dexamethasone suppression test, the 24-hour urine cortisol is elevated, or the late-night salivary cortisol level is elevated, the excess cortisol is likely due to abnormal increased ACTH production by the pituitary or a tumor outside of the pituitary, or abnormal production by the adrenal glands. Additional tests will aid in determining the root of the problem.

If the person examined responds to an ACTH stimulation test and has insufficient cortisol, the problem is most likely due to insufficient ACTH production by the pituitary. If the person does not respond to the ACTH stimulation test, the problem is most likely to be with the adrenal glands. Secondary adrenal insufficiency occurs when the adrenal glands are underactive as a result of pituitary dysfunction and/or insufficient ACTH synthesis. Adrenal injury causes decreased cortisol production, which is referred to as primary adrenal insufficiency or Addison disease.

Once an irregularity has been found and linked to the pituitary gland, adrenal glands, or another source, the health practitioner may utilize additional testing, such as a CT scan, to determine the extent of any gland damage.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: A cortisol test measures the amount of cortisol in the blood. These levels will start off high in the morning and throughout the say they become lower. At midnight they are typically at their lowest level. Someone who works a night shift or has an irregular sleep schedule may have a different pattern. This test can be used to determine Cushing's or Addison's Disease.

Also Known As: Cortisol Total Test, Cortisol 5 Specimen Test, 5 Specimen Cortisol Test, Cortisol Blood Test, Cortisol Serum Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: No preparation required

When is a Cortisol 5 Specimen test ordered?

When a person has symptoms that point to a high level of cortisol and Cushing syndrome, a cortisol test may be recommended.

Women with irregular menstrual periods and increased facial hair may be tested, and children with delayed development and small stature may also be tested.

When someone exhibits symptoms that point to a low cortisol level, adrenal insufficiency, or Addison disease, this test may be ordered.

What does a Cortisol 5 Specimen blood test check for?

Cortisol is a hormone that plays a function in protein, lipid, and carbohydrate metabolism. It has an effect on blood glucose levels, blood pressure, and immune system regulation. Only a small fraction of cortisol in the blood is "free" and biologically active; the majority is attached to a protein. Cortisol is a hormone that is produced into the urine and found in the saliva. This test determines how much cortisol is present in the blood, urine, or saliva.

Cortisol levels in the blood usually rise and fall in a pattern known as "diurnal variation." It reaches its highest point early in the morning, then gradually decreases over the day, reaching its lowest point around midnight. When a person works irregular shifts and sleeps at different times of the day, this rhythm might fluctuate, and it can be disrupted when a disease or condition inhibits or stimulates cortisol production.

The adrenal glands, two triangle organs that sit on top of the kidneys, generate and emit cortisol. The hypothalamus in the brain and the pituitary gland, a small organ below the brain, control the hormone's production. The hypothalamus produces corticotropin-releasing hormone when blood cortisol levels drop, which tells the pituitary gland to create ACTH. The adrenal glands are stimulated by ACTH to generate and release cortisol. The brain, pituitary, and adrenal glands must all be operating properly in order to produce enough levels of cortisol.

Cushing syndrome is a collection of signs and symptoms associated with an unusually high cortisol level. Cortisol production may be increased as a result of:

  • Large doses of glucocorticosteroid hormones are given to treat a range of ailments, including autoimmune illness and certain cancers.
  • Tumors that produce ACTH in the pituitary gland and/or other regions of the body.
  • Cortisol production by the adrenal glands is increased as a result of a tumor or abnormal expansion of adrenal tissues.

Rarely, CRH-producing malignancies in various regions of the body.

Cortisol production may be reduced as a result of:

  • Secondary adrenal insufficiency is caused by an underactive pituitary gland or a pituitary gland tumor that prevents ACTH production.
  • Primary adrenal insufficiency, often known as Addison disease, is characterized by underactive or injured adrenal glands that limit cortisol production.

After quitting glucocorticosteroid hormone medication, especially if it was abruptly stopped after a long time of use.

Lab tests often ordered with a Cortisol 5 Specimen test:

  • Cortisol Saliva
  • ACTH
  • Aldosterone
  • 17-Hydroxyprogesterone
  • Growth Hormone

Conditions where a Cortisol 5 Specimen test is recommended:

  • Addison’s Disease
  • Cushing’s Syndrome
  • Endocrine Syndromes
  • Hypertension
  • Pituitary Disorders

How does my health care provider use a Cortisol 5 Specimen test?

A cortisol test can be used to detect Cushing syndrome, which is characterized by an excess of cortisol, as well as adrenal insufficiency or Addison disease, which are characterized by a deficiency of cortisol. Cortisol is a hormone that regulates protein, lipid, and carbohydrate metabolism, among other functions. Cortisol levels in the blood normally increase and fall in a "diurnal variation" pattern, rising early in the morning, dropping during the day, and reaching their lowest point around midnight.

The adrenal glands generate and excrete cortisol. The hypothalamus in the brain and the pituitary gland, a small organ below the brain, control the hormone's production. The hypothalamus produces corticotropin-releasing hormone when blood cortisol levels drop, which tells the pituitary gland to create ACTH. The adrenal glands are stimulated by ACTH to generate and release cortisol. The brain, pituitary, and adrenal glands must all be operating properly in order to produce enough levels of cortisol.

Only a small fraction of cortisol in the blood is "free" and biologically active; the majority is attached to a protein. Blood cortisol testing assesses both protein-bound and free cortisol, but urine and saliva cortisol testing assesses only free cortisol, which should be in line with blood cortisol levels. Multiple blood and/or saliva cortisol levels collected at various times, such as 8 a.m. and 4 p.m., can be used to assess cortisol levels and diurnal variation. A 24-hour urine cortisol sample will not reveal diurnal variations; instead, it will assess the total quantity of unbound cortisol voided over the course of 24 hours.

If an elevated amount of cortisol is found, a health professional will conduct additional tests to confirm the results and discover the cause.

If a person's blood cortisol level is abnormally high, a doctor may order additional tests to be sure the high cortisol is indeed abnormal. Additional testing could involve monitoring 24-hour urinary cortisol, doing an overnight dexamethasone suppression test, and/or obtaining a salivary sample before sleep to detect cortisol at its lowest level. Urinary cortisol testing necessitates collecting urine over a set length of time, usually 24 hours. Because ACTH is released in pulses by the pituitary gland, this test can assist evaluate whether a raised blood cortisol level is a true rise.

An ACTH stimulation test may be ordered if a health practitioner feels that the adrenal glands are not releasing enough cortisol or if initial blood tests reveal insufficient cortisol production.

ACTH stimulation is a test that measures the amount of cortisol in a person's blood before and after a synthetic ACTH injection. Cortisol levels will rise in response to ACTH stimulation if the adrenal glands are functioning normally. Cortisol levels will be low if they are damaged or not working properly. To distinguish between adrenal and pituitary insufficiency, a lengthier variant of this test can be used.

What do my Cortisol Total test results mean?

Cortisol levels are typically lowest before bedtime and highest shortly after awakening, though this pattern can be disrupted if a person works rotating shifts and sleeps at various times on separate days.

Excess cortisol and Cushing syndrome are indicated by an increased or normal cortisol level shortly after awakening, as well as a level that does not diminish by bedtime. If the excess cortisol is not suppressed after an overnight dexamethasone suppression test, the 24-hour urine cortisol is elevated, or the late-night salivary cortisol level is elevated, the excess cortisol is likely due to abnormal increased ACTH production by the pituitary or a tumor outside of the pituitary, or abnormal production by the adrenal glands. Additional tests will aid in determining the root of the problem.

If the person examined responds to an ACTH stimulation test and has insufficient cortisol, the problem is most likely due to insufficient ACTH production by the pituitary. If the person does not respond to the ACTH stimulation test, the problem is most likely to be with the adrenal glands. Secondary adrenal insufficiency occurs when the adrenal glands are underactive as a result of pituitary dysfunction and/or insufficient ACTH synthesis. Adrenal injury causes decreased cortisol production, which is referred to as primary adrenal insufficiency or Addison disease.

Once an irregularity has been found and linked to the pituitary gland, adrenal glands, or another source, the health practitioner may utilize additional testing, such as a CT scan, to determine the extent of any gland damage.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Free cortisol is useful in the detection of patients with Cushing's syndrome for whom free cortisol concentrations are elevated.

Reference Range(s)

Adult    
8:00 A.M.-10:00 A.M. 0.07-0.93 µg/dL
4:00 P.M.-6:00 P.M. 0.04-0.45 µg/dL
10:00 P.M.-11:00 P.M. 0.04-0.35 µg/dL

Description: ACTH is a blood test that measures the amount of the adrenocorticotropic hormone in the body’s system. The results can be used to help diagnose or monitor a hormone imbalance or a specific condition or disease related to the pituitary gland.

Also Known As: Adrenocorticotropic Hormone Test, Corticotropin Test, Cosyntropin Test

Collection Method: Blood Draw

Specimen Type: Plasma

Test Preparation: Collect specimen between 7 a.m. and 10 a.m. If drawn at any other time, the reference ranges do not apply

When is an ACTH test ordered?

When a cortisol test reveals aberrant results or when someone has indications or symptoms of excess or inadequate cortisol, an ACTH test may be recommended.

Cortisol excess can induce the following symptoms:

  • Obesity
  • Fat between the shoulders
  • Red, rounded face
  • Skin that is fragile and thin
  • Purple lines on the abdomen
  • Muscle loss
  • Acne
  • Skin problems
  • Excessive body hair
  • Fatigue

High blood pressure, low potassium, high bicarbonate, high glucose levels, and occasionally diabetes are all common with these symptoms.

People with low cortisol levels may have symptoms such as:

  • Muscle wasting
  • Fatigue
  • Loss of weight
  • Skin pigmentation increases, even in places not exposed to the sun
  • Appetite loss
  • Nausea, vomiting, and diarrhea
  • Dizziness
  • Cravings for salt

Low blood pressure, low blood glucose, low sodium, high potassium, and high calcium are frequently found in conjunction with these symptoms.

Several of the following symptoms are commonly associated with hypopituitarism:

  • Appetite loss
  • Fatigue
  • Menstrual cycle irregularity
  • Sexual organ dysfunction
  • Reduced sexual desire
  • Urination during the night
  • Unprecedented weight loss
  • Hot flashes
  • sensitivity to cold

When a pituitary tumor causes symptoms, the affected person may also experience symptoms related to the compression of adjacent cells and nerves. The tumor, for example, can modify the pattern of headaches. It can also impair the nerves that control vision, creating symptoms like "tunnel vision," localized visual loss, or "double vision."

What does an ACTH blood test check for?

Adrenocorticotropic hormone is a hormone that promotes cortisol production. Cortisol is a steroid hormone produced by the adrenal glands that regulates glucose, protein, and lipid metabolism, suppresses the immune system's reaction, and aids in blood pressure regulation. This test determines how much ACTH is present in the blood.

The pituitary gland is responsible for producing ACTH. The pituitary gland is a network of glands that work together to create hormones that operate on organs, tissues, and other glands to govern systems throughout the body. It is located below the brain in the center of the head.

ACTH levels rise when cortisol levels are low and fall when cortisol levels are high. The hypothalamus produces corticotropin-releasing hormone in response to a drop in blood cortisol levels. This causes the pituitary gland to produce ACTH, which in turn stimulates the adrenal glands, which are small organs at the top of each kidney, to produce cortisol. The brain, pituitary, and adrenal glands must all be operating properly in order to produce enough levels of cortisol.

Conditions affecting the hypothalamus, pituitary, or adrenal glands can disrupt the regulation of ACTH and cortisol production, causing the glands to generate more or less of the hormones. This can result in signs and symptoms linked with cortisol excess or insufficiency. Cushing disease, Addison disease, and hypopituitarism are all conditions that impact ACTH. Some tumors outside of the pituitary, such as those in the lungs, can also produce ACTH, which raises cortisol levels.

Lab tests often ordered with an ACTH test:

  • Cortisol
  • Cortrosyn Stimulation test
  • Dexamethasone Suppression Test
  • Androstenedione

Conditions where an ACTH test is recommended:

  • Addison Disease
  • Adrenal Insufficiency
  • Cushing Syndrome
  • Endocrine Syndromes

How does my health care provider use an ACTH test?

ACTH blood tests are used to detect, diagnose, and monitor problems related with excessive or deficient cortisol in the body, usually in conjunction with cortisol tests. These circumstances include:

  • Cushing disease is characterized by high cortisol levels caused by an ACTH-producing tumor in the pituitary gland.
  • Cushing syndrome refers to the symptoms and signs of high cortisol levels; it can be caused by an adrenal tumor, adrenal hyperplasia, steroid use, or an ACTH-producing tumor outside the pituitary, such as in the lungs.
  • Cortisol production is reduced in Addison disease due to adrenal gland injury.
  • Secondary adrenal insufficiency: pituitary dysfunction causes decreased cortisol production.
  • Hypopituitarism is pituitary dysfunction or injury that causes the pituitary to produce less hormones, notably ACTH.

Because the level of ACTH generally varies in the opposite direction of the level of cortisol, measuring both can assist distinguish between some of these diseases.

If abnormal levels are found, a healthcare professional will do additional testing to confirm the results and discover the cause.

What do my ACTH test results mean?

The interpretation of the results can be difficult in many circumstances. ACTH and cortisol levels fluctuate throughout the day. ACTH levels are normally highest in the morning and lowest at night. It will increase cortisol production, which will follow the same daily rhythm as ACTH but rise later in the day and fall later in the evening. This diurnal rhythm is frequently disrupted by conditions that influence ACTH and cortisol synthesis.

ACTH and cortisol patterns associated with various illnesses of the adrenal and pituitary glands.

An adrenal tumor, steroid treatment, or hypopituitarism can all cause a reduction in ACTH.

Cushing disease and ectopic ACTH cannot be reliably distinguished from cortisol and ACTH measurements alone. Other tests are also performed to aid healthcare providers in determining this distinction. When some medications are given to promote or repress hormone synthesis, testing the change in cortisol levels might assist the healthcare practitioner establish the correct diagnosis.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.


Description: A CBC or Complete Blood Count with Differential and Platelets test is a blood test that measures many important features of your blood’s red and white blood cells and platelets. A Complete Blood Count can be used to evaluate your overall health and detect a wide variety of conditions such as infection, anemia, and leukemia. It also looks at other important aspects of your blood health such as hemoglobin, which carries oxygen. 

Also Known As: CBC test, Complete Blood Count Test, Total Blood Count Test, CBC with Differential and Platelets test, Hemogram test  

Collection Method: Blood Draw 

Specimen Type: Whole Blood 

Test Preparation: No preparation required 

When is a Complete Blood Count test ordered?  

The complete blood count (CBC) is an extremely common test. When people go to the doctor for a standard checkup or blood work, they often get a CBC. Suppose a person is healthy and their results are within normal ranges. In that case, they may not need another CBC unless their health condition changes, or their healthcare professional believes it is necessary. 

When a person exhibits a variety of signs and symptoms that could be connected to blood cell abnormalities, a CBC may be done. A health practitioner may request a CBC to help diagnose and determine the severity of lethargy or weakness, as well as infection, inflammation, bruises, or bleeding. 

When a person is diagnosed with a disease that affects blood cells, a CBC is frequently done regularly to keep track of their progress. Similarly, if someone is being treated for a blood condition, a CBC may be performed on a regular basis to see if the treatment is working. 

Chemotherapy, for example, can influence the generation of cells in the bone marrow. Some drugs can lower WBC counts in the long run. To monitor various medication regimens, a CBC may be required on a regular basis. 

What does a Complete Blood Count test check for? 

The complete blood count (CBC) is a blood test that determines the number of cells in circulation. White blood cells (WBCs), red blood cells (RBCs), and platelets (PLTs) are three types of cells suspended in a fluid called plasma. They are largely created and matured in the bone marrow and are released into the bloodstream when needed under normal circumstances. 

A CBC is mainly performed with an automated machine that measures a variety of factors, including the number of cells present in a person's blood sample. The findings of a CBC can reveal not only the quantity of different cell types but also the physical properties of some of the cells. 

Significant differences in one or more blood cell populations may suggest the presence of one or more diseases. Other tests are frequently performed to assist in determining the reason for aberrant results. This frequently necessitates visual confirmation via a microscope examination of a blood smear. A skilled laboratory technician can assess the appearance and physical features of blood cells, such as size, shape, and color, and note any anomalies. Any extra information is taken note of and communicated to the healthcare provider. This information provides the health care provider with further information about the cause of abnormal CBC results. 

The CBC focuses on three different types of cells: 

WBCs (White Blood Cells) 

The body uses five different types of WBCs, also known as leukocytes, to keep itself healthy and battle infections and other types of harm. The five different leukocytes are eosinophiles, lymphocytes, neutrophiles, basophils, and monocytes. They are found in relatively steady numbers in the blood. Depending on what is going on in the body, these values may momentarily rise or fall. An infection, for example, can cause the body to manufacture more neutrophils in order to combat bacterial infection. The amount of eosinophils in the body may increase as a result of allergies. A viral infection may cause an increase in lymphocyte production. Abnormal (immature or mature) white cells multiply fast in certain illness situations, such as leukemia, raising the WBC count. 

RBCs (Red Blood Cells) 

The bone marrow produces red blood cells, also known as erythrocytes, which are transferred into the bloodstream after maturing. Hemoglobin, a protein that distributes oxygen throughout the body, is found in these cells. Because RBCs have a 120-day lifespan, the bone marrow must constantly manufacture new RBCs to replace those that have aged and disintegrated or have been lost due to hemorrhage. A variety of diseases, including those that cause severe bleeding, can alter the creation of new RBCs and their longevity. 

The CBC measures the number of RBCs and hemoglobin in the blood, as well as the proportion of RBCs in the blood (hematocrit), and if the RBC population appears to be normal. RBCs are generally homogeneous in size and shape, with only minor differences; however, considerable variances can arise in illnesses including vitamin B12 and folate inadequacy, iron deficiency, and a range of other ailments. Anemia occurs when the concentration of red blood cells and/or the amount of hemoglobin in the blood falls below normal, resulting in symptoms such as weariness and weakness. In a far smaller percentage of cases, there may be an excess of RBCs in the blood (erythrocytosis or polycythemia). This might obstruct the flow of blood through the tiny veins and arteries in extreme circumstances. 

Platelets 

Platelets, also known as thrombocytes, are small cell fragments that aid in the regular clotting of blood. A person with insufficient platelets is more likely to experience excessive bleeding and bruises. Excess platelets can induce excessive clotting or excessive bleeding if the platelets are not operating properly. The platelet count and size are determined by the CBC. 

Lab tests often ordered with a Complete Blood Count test: 

  • Reticulocytes
  • Iron and Total Iron Binding Capacity
  • Basic Metabolic Panel
  • Comprehensive Metabolic Panel
  • Lipid Panel
  • Vitamin B12 and Folate
  • Prothrombin with INR and Partial Thromboplastin Times
  • Sed Rate (ESR)
  • C-Reactive Protein
  • Epstein-Barr Virus
  • Von Willebrand Factor Antigen

Conditions where a Complete Blood Count test is recommended: 

  • Anemia
  • Aplastic Anemia
  • Iron Deficiency Anemia
  • Vitamin B12 and Folate Deficiency
  • Sickle Cell Anemia
  • Heart Disease
  • Thalassemia
  • Leukemia
  • Autoimmune Disorders
  • Cancer
  • Bleeding Disorders
  • Inflammation
  • Epstein-Barr Virus
  • Mononucleosis

Commonly Asked Questions: 

How does my health care provider use a Complete Blood Count test? 

The complete blood count (CBC) is a common, comprehensive screening test used to measure a person's overall health status.  

What do my Complete Blood Count results mean? 

A low Red Blood Cell Count, also known as anemia, could be due many different causes such as chronic bleeding, a bone marrow disorder, and nutritional deficiency just to name a few. A high Red Blood Cell Count, also known as polycythemia, could be due to several conditions including lung disease, dehydration, and smoking. Both Hemoglobin and Hematocrit tend to reflect Red Blood Cell Count results, so if your Red Blood Cell Count is low, your Hematocrit and Hemoglobin will likely also be low. Results should be discussed with your health care provider who can provide interpretation of your results and determine the appropriate next steps or lab tests to further investigate your health. 

What do my Differential results mean? 

A low White Blood Cell count or low WBC count, also known as leukopenia, could be due to a number of different disorders including autoimmune issues, severe infection, and lymphoma. A high White Blood Cell count, or high WBC count, also known as leukocytosis, can also be due to many different disorders including infection, leukemia, and inflammation. Abnormal levels in your White Blood Cell Count will be reflected in one or more of your different white blood cells. Knowing which white blood cell types are affected will help your healthcare provider narrow down the issue. Results should be discussed with your health care provider who can provide interpretation of your results and determine the appropriate next steps or lab tests to further investigate your health. 

What do my Platelet results mean? 

A low Platelet Count, also known as thrombocytopenia, could be due to a number of different disorders including autoimmune issues, viral infection, and leukemia. A high Platelet Count, also known as Thrombocytosis, can also be due to many different disorders including cancer, iron deficiency, and rheumatoid arthritis. Results should be discussed with your health care provider who can provide interpretation of your results and determine the appropriate next steps or lab tests to further investigate your health. 

NOTE: Only measurable biomarkers will be reported. Certain biomarkers do not appear in healthy individuals. 

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.

Reflex Parameters for Manual Slide Review
  Less than  Greater Than 
WBC  1.5 x 10^3  30.0 x 10^3 
Hemoglobin  7.0 g/dL  19.0 g/dL 
Hematocrit  None  75%
Platelet  100 x 10^3  800 x 10^3 
MCV  70 fL  115 fL 
MCH  22 pg  37 pg 
MCHC  29 g/dL  36.5 g/dL 
RBC  None  8.00 x 10^6 
RDW  None  21.5
Relative Neutrophil %  1% or ABNC <500  None 
Relative Lymphocyte %  1% 70%
Relative Monocyte %  None  25%
Eosinophil  None  35%
Basophil  None  3.50%
     
Platelet  <75 with no flags,
>100 and <130 with platelet clump flag present,
>1000 
Instrument Flags Variant lymphs, blasts,
immature neutrophils,  nRBC’s, abnormal platelets,
giant platelets, potential interference
     
The automated differential averages 6000+ cells. If none of the above parameters are met, the results are released without manual review.
CBC Reflex Pathway

Step 1 - The slide review is performed by qualified Laboratory staff and includes:

  • Confirmation of differential percentages
  • WBC and platelet estimates, when needed
  • Full review of RBC morphology
  • Comments for toxic changes, RBC inclusions, abnormal lymphs, and other
  • significant findings
  • If the differential percentages agree with the automated counts and no abnormal cells are seen, the automated differential is reported with appropriate comments

Step 2 - The slide review is performed by qualified Laboratory staff and includes: If any of the following are seen on the slide review, Laboratory staff will perform a manual differential:

  • Immature, abnormal, or toxic cells
  • nRBC’s
  • Disagreement with automated differential
  • Atypical/abnormal RBC morphology
  • Any RBC inclusions

Step 3 If any of the following are seen on the manual differential, a Pathologist will review the slide:

  • WBC<1,500 with abnormal cells noted
  • Blasts/immature cells, hairy cell lymphs, or megakaryocytes
  • New abnormal lymphocytes or monocytes
  • Variant or atypical lymphs >15%
  • Blood parasites
  • RBC morphology with 3+ spherocytes, RBC inclusions, suspect Hgb-C,
  • crystals, Pappenheimer bodies or bizarre morphology
  • nRBC’s

Description: A Comprehensive Metabolic Panel or CMP is a blood test that is a combination of a Basic Metabolic Panel, a Liver Panel, and electrolyte panel, and is used to screen for, diagnose, and monitor a variety of conditions and diseases such as liver disease, diabetes, and kidney disease. 

Also Known As: CMP, Chem, Chem-14, Chem-12, Chem-21, Chemistry Panel, Chem Panel, Chem Screen, Chemistry Screen, SMA 12, SMA 20, SMA 21, SMAC, Chem test

Collection Method: 

Blood Draw 

Specimen Type: 

Serum 

Test Preparation: 

9-12 hours fasting is preferred. 

When is a Comprehensive Metabolic Panel test ordered:  

A CMP is frequently requested as part of a lab test for a medical evaluation or yearly physical. A CMP test consists of many different tests that give healthcare providers a range of information about your health, including liver and kidney function, electrolyte balance, and blood sugar levels. To confirm or rule out a suspected diagnosis, abnormal test results are frequently followed up with other tests that provide a more in depth or targeted analysis of key areas that need investigating. 

What does a Comprehensive Metabolic Panel blood test check for? 

The complete metabolic panel (CMP) is a set of 20 tests that provides critical information to a healthcare professional about a person's current metabolic status, check for liver or kidney disease, electrolyte and acid/base balance, and blood glucose and blood protein levels. Abnormal results, particularly when they are combined, can suggest a problem that needs to be addressed. 

The following tests are included in the CMP: 

  • Albumin: this is a measure of Albumin levels in your blood. Albumin is a protein made by the liver that is responsible for many vital roles including transporting nutrients throughout the body and preventing fluid from leaking out of blood vessels. 

  • Albumin/Globulin Ratio: this is a ratio between your total Albumin and Globulin  

  • Alkaline Phosphatase: this is a measure of Alkaline phosphatase or ALP in your blood. Alkaline phosphatase is a protein found in all body tissues, however the ALP found in blood comes from the liver and bones. Elevated levels are often associated with liver damage, gallbladder disease, or bone disorder. 

  • Alt: this is a measure of Alanine transaminase or ALT in your blood. Alanine Aminotransferase is an enzyme found in the highest amounts in the liver with small amounts in the heart and muscles. Elevated levels are often associated with liver damage. 

  • AST: this is a measure of Aspartate Aminotransferase or AST. Aspartate Aminotransferase is an enzyme found mostly in the heart and liver, with smaller amounts in the kidney and muscles. Elevated levels are often associated with liver damage. 

  • Bilirubin, Total: this is a measure of bilirubin in your blood. Bilirubin is an orange-yellowish waste product produced from the breakdown of heme which is a component of hemoglobin found in red blood cells. The liver is responsible for removal of bilirubin from the body. 

  • Bun/Creatinine Ratio: this is a ratio between your Urea Nitrogen (BUN) result and Creatinine result.  

  • Calcium: this is a measurement of calcium in your blood. Calcium is the most abundant and one of the most important minerals in the body as it essential for proper nerve, muscle, and heart function. 

  • Calcium: is used for blood clot formation and the formation and maintenance of bones and teeth. 

  • Carbon Dioxide: this is a measure of carbon dioxide in your blood. Carbon dioxide is a negatively charged electrolyte that works with other electrolytes such as chloride, potassium, and sodium to regulate the body’s acid-base balance and fluid levels.  

  • Chloride: this is a measure of Chloride in your blood. Chloride is a negatively charged electrolyte that works with other electrolytes such as potassium and sodium to regulate the body’s acid-base balance and fluid levels. 

  • Creatinine: this is a measure of Creatinine levels in your blood. Creatinine is created from the breakdown of creatine in your muscles and is removed from your body by the kidneys. Elevated creatinine levels are often associated with kidney damage. 

  • Egfr African American: this is a measure of how well your kidneys are functioning. Glomeruli are tiny filters in your kidneys that filter out waste products from your blood for removal while retaining important substances such as nutrients and blood cells. 

  • Egfr Non-Afr. American: this is a measure of how well your kidneys are functioning. Glomeruli are tiny filters in your kidneys that filter out waste products from your blood for removal while retaining important substances such as nutrients and blood cells. 

  • Globulin: this is a measure of all blood proteins in your blood that are not albumin. 

  • Glucose: this is a measure of glucose in your blood. Glucose is created from the breakdown of carbohydrates during digestion and is the body’s primary source of energy. 

  • Potassium: this is a measure of Potassium in your blood. Potassium is an electrolyte that plays a vital role in cell metabolism, nerve and muscle function, and transport of nutrients into cells and removal of wastes products out of cells. 

  • Protein, Total: this is a measure of total protein levels in your blood. 
    Sodium: this is a measure of Sodium in your blood. Sodium is an electrolyte that plays a vital role in nerve and muscle function. 

  • Sodium: this is a measure of sodium in your blood's serum. Sodium is a vital mineral for nerve and muscle cell function.

  • Urea Nitrogen (Bun): this is a measure of Urea Nitrogen in your blood, also known as Blood UreaNitrogen (BUN). Urea is a waste product created in the liver when proteins are broken down into amino acids. Elevated levels are often associated with kidney damage. 

Lab tests often ordered with a Comprehensive Metabolic Panel test: 

  • Complete Blood Count with Differential and Platelets
  • Iron and Total Iron Binding Capacity
  • Lipid Panel
  • Vitamin B12 and Folate
  • Prothrombin with INR and Partial Thromboplastin Times
  • Sed Rate (ESR)
  • C-Reactive Protein

Conditions where a Comprehensive Metabolic Panel test is recommended: 

  • Diabetes
  • Kidney Disease
  • Liver Disease
  • Hypertension

Commonly Asked Questions: 

How does my health care provider use a Comprehensive Metabolic Panel test? 

The comprehensive metabolic panel (CMP) is a broad screening tool for assessing organ function and detecting diseases like diabetes, liver disease, and kidney disease. The CMP test may also be requested to monitor known disorders such as hypertension and to check for any renal or liver-related side effects in persons taking specific drugs. If a health practitioner wants to follow two or more separate CMP components, the full CMP might be ordered because it contains more information. 

What do my Comprehensive Metabolic Panel test results mean? 

The results of the tests included in the CMP are usually analyzed together to look for patterns. A single abnormal test result may indicate something different than a series of abnormal test findings. A high result on one of the liver enzyme tests, for example, is not the same as a high result on several liver enzyme tests. 

Several sets of CMPs, frequently performed on various days, may be examined to gain insights into the underlying disease and response to treatment, especially in hospitalized patients. 

Out-of-range findings for any of the CMP tests can be caused by a variety of illnesses, including kidney failure, breathing issues, and diabetes-related complications, to name a few. If any of the results are abnormal, one or more follow-up tests are usually ordered to help determine the reason and/or establish a diagnosis. 

Is there anything else I should know? 

A wide range of prescription and over-the-counter medications can have an impact on the results of the CMP's components. Any medications you're taking should be disclosed to your healthcare professional. Similarly, it is critical to provide a thorough history because many other circumstances can influence how your results are interpreted. 

What's the difference between the CMP and the BMP tests, and why would my doctor choose one over the other? 

The CMP consists of 14 tests, while the basic metabolic panel (BMP) is a subset of those with eight tests. The liver (ALP, ALT, AST, and bilirubin) and protein (albumin and total protein) tests are not included. If a healthcare provider wants a more thorough picture of a person's organ function or to check for specific illnesses like diabetes or liver or kidney disease, he or she may prescribe a CMP rather than a BMP. 

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.

Please note the following regarding BUN/Creatinine ratio: 

The lab does not report the calculation for the BUN/Creatinine Ratio unless one or both biomarkers’ results fall out of the published range. 

If you still wish to see the value, it's easy to calculate. Simply take your Urea Nitrogen (BUN) result and divide it by your Creatinine result.  

As an example, if your Urea Nitrogen result is 11 and your Creatinine result is 0.86, then you would divide 11 by 0.86 and get a BUN/Creatinine Ratio result of 12.79. 


Dexamethasone

 

Clinical Significance

Test used in the differential diagnosis of Cushing's syndrome.


Description: A Glucose tolerance test is a blood test used to screen for, diagnose, and monitor conditions that affect glucose levels such as prediabetes, diabetes, hyperglycemia, and hypoglycemia.

Also Known As: Fasting Blood Glucose Test, FBG Test, Blood Sugar Test, Fasting Blood Sugar Test, FBS Test, Fasting Glucose Test, FG Test, Glucose Tolerance Test, GTT Test, Glucose 2 Specimen Test, Glucose 1 Hour Test, Glucose half hour Test, 2 Specimen Glucose Test

Collection Method: Blood Draw

Specimen Type: Serum

Test Preparation: Fasting required

When is a 2 Specimen Glucose Tolerance test ordered?

Diabetes screening is recommended by several health groups, including the American Diabetes Association and the United States Preventive Services Task Force, when a person is 45 years old or has risk factors.

The ADA recommends retesting within three years if the screening test result is within normal limits, but the USPSTF recommends testing once a year. Annual testing may be used to monitor people with prediabetes.

When someone exhibits signs and symptoms of high blood glucose, a blood glucose test may be conducted.

Diabetics are frequently asked to self-check their glucose levels multiple times a day in order to monitor glucose levels and choose treatment alternatives as suggested by their doctor. Blood glucose levels may be ordered on a regular basis, along with other tests such as A1c, to track glucose control over time.

Unless they show early symptoms or have had gestational diabetes in a prior pregnancy, pregnant women are routinely screened for gestational diabetes between the 24th and 28th week of pregnancy. If a woman is at risk of type 2 diabetes, she may be tested early in her pregnancy, according to the American Diabetes Association. When a woman has type 1, type 2, or gestational diabetes, her health care provider will normally order glucose levels to monitor her condition throughout the duration of her pregnancy and after delivery.

What does a 2 Specimen Glucose Tolerance blood test check for?

A Glucose Tolerance test measures glucose levels in your blood over a period of time through multiple specimen. Glucose is the major energy source for the body's cells and the brain and nervous system's only source of energy. A consistent supply must be provided, and a somewhat constant level of glucose in the blood must be maintained. The glucose level in the blood can be measured using a variety of methods. 

Fruits, vegetables, breads, and other carbohydrate-rich foods are broken down into glucose during digestion, which is absorbed by the small intestine and circulated throughout the body. Insulin, a hormone generated by the pancreas, is required for the use of glucose for energy production. Insulin promotes glucose transport into cells and instructs the liver to store surplus energy as glycogen for short-term storage or triglycerides in adipose cells.

Normally, blood glucose rises slightly after you eat or drink, and the pancreas responds by releasing insulin into the blood, the amount of which is proportional to the size and substance of the meal. The level of glucose in the blood declines as glucose enters the cells and is digested, and the pancreas responds by delaying, then ceasing the secretion of insulin.

When blood glucose levels fall too low, such as between meals or after a strong activity, glucagon is released, which causes the liver to convert some glycogen back into glucose, so boosting blood glucose levels. The level of glucose in the blood remains pretty steady if the glucose/insulin feedback loop is working appropriately. When the balance is upset and the blood glucose level rises, the body strives to restore it by boosting insulin production and removing excess glucose through the urine.

Several diseases can cause the equilibrium between glucose and pancreatic hormones to be disrupted, resulting in high or low blood glucose. Diabetes is the most common cause. Diabetes is a collection of illnesses characterized by inadequate insulin production and/or insulin resistance. Untreated diabetes impairs a person's ability to digest and utilize glucose normally. Type 1 diabetes is diagnosed when the body is unable to produce any or enough insulin. People with prediabetes or type 2 diabetes are insulin resistant and may or may not be able to produce enough of the hormone.

Organ failure, brain damage, coma, and, in extreme situations, death can result from severe, sudden fluctuations in blood glucose, either high or low. Chronically high blood glucose levels can harm body organs like the kidneys, eyes, heart, blood vessels, and nerves over time. Hypoglycemia can harm the brain and nerves over time.

Gestational diabetes, or hyperglycemia that exclusively arises during pregnancy, can affect some women. If left untreated, this can result in large babies with low glucose levels being born to these mothers. Women with gestational diabetes may or may not acquire diabetes later in life.

Lab tests often ordered with a 2 Specimen Glucose Tolerance test:

  • Complete Blood Count
  • Iron Total and Total Iron binding capacity
  • Hemoglobin A1c
  • Lipid Panel
  • Urinalysis Complete
  • TSH
  • CMP
  • Insulin
  • Microalbumin
  • Fructosamine
  • C-Peptide

Conditions where a 2 Specimen Glucose Tolerance test is recommended:

  • Diabetes
  • Kidney Disease
  • Insulin Resistance
  • Pancreatic Diseases
  • Hyperglycemia
  • Hypoglycemia

Commonly Asked Questions:

How does my health care provider use a 2 Specimen Glucose Tolerance test?

A blood glucose test can be used for a variety of purposes, including:

  • Detect hyperglycemia and hypoglycemia
  • Screen for diabetes in those who are at risk before symptoms appear; there may be no early indications or symptoms of diabetes in some circumstances. As a result, screening can aid in detecting it and allowing treatment to begin before the illness worsens or complications emerge.
  • Aid in the detection of diabetes, prediabetes, and gestational diabetes.
  • Monitor your blood sugar levels and manage your diabetes

Glucose levels should be monitored in those who have been diagnosed with diabetes.

Between the 24th and 28th week of pregnancy, glucose blood tests are performed to assess pregnant women for gestational diabetes. Pregnant women who have never been diagnosed with diabetes should be screened and diagnosed using either a one-step or two-step strategy, according to the American Diabetes Association and the US Preventive Services Task Force.

Other tests, including diabetic autoantibodies, insulin, and C-peptide, may be used in conjunction with glucose to assist in detecting the reason of elevated glucose levels, differentiate between type 1 and type 2 diabetes, and assess insulin production.

What do my glucose test results mean?

High blood glucose levels are most commonly associated with diabetes, but they can also be caused by a variety of other diseases and ailments.

Hypoglycemia is defined by a drop in blood glucose to a level that triggers nervous system symptoms before affecting the brain.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.



The signs and symptoms of Cushing Syndrome are the results of cortisol levels that are abnormally high, which is referred to as hypercortisolism. Cortisol is a steroidal hormone that is produced by the cortex, which is the outer layer of the adrenal gland.

The hormone has multiple functions, including: 

  • The break-down of fat. 
  • Encourages glucose production in the liver. 
  • Assists in the reaction to emotional and physical stress. 
  • Regulates blood pressure. 
  • Controls inflammation. 
  • Affects the function of the cardiovascular system. 

The adrenal glands, located at the apex of each kidney, form part of the endocrine system, which is a network of glands in the body that are responsible for the production of hormones. The adrenal cortex is specifically tasked with the production of cortisol, aldosterone as well as adrenal androgens (mainly dehydroepiandrosterone or DHEA). 

A feedback system revolving around the pituitary gland, the adrenal glands and the hypothalamus (a gland located in the lower brain) is responsible for regulating cortisol production. When the hypothalamus detects low levels of cortisol, it produces corticotropin-releasing hormones or CRH. This hormone stimulates the production of adrenocorticotropic hormones or ACTH in the pituitary gland. This hormone, also referred to as corticotropin, in turn, stimulates the production and release of cortisol in the adrenal glands. High levels of cortisol reduce the production of CRH and ACTH to suppress cortisol production. 

Common Causes of Cushing Syndrome 

  • Extended glucocorticoid treatment resulting in iatrogenic Cushing Syndrome. Glucocorticoids are synthetic steroids that mimic cortisol on a chemical basis like Prednisone, which is used to treat health conditions such as asthma, rheumatoid arthritis, lupus, and other diseases that are inflammatory in nature. These hormones may also be prescribed after organ transplants to prevent organ rejection by lowering the immune system. 
  • Cushing’s Disease, which is a type of Cushing Syndrome, results from the overproduction of ACTH by the pituitary gland, which continuously signals the adrenal glands to produce excess endogenous cortisol. Most commonly, Cushing’s Disease, which makes up 40% of cases, is the result of a tumor called an adenoma on the pituitary gland that secretes ACTH. 
  • A tumor on the adrenal gland called adrenal hyperplasia, which causes excess production of cortisol.  
  • Tumors in other parts of the body, such as the thyroid, pancreas, or lungs that produce ACTH. This is referred to as the ectopic production of ACTH as it is produced in parts of the body other than the pituitary gland. 
  • Gene mutations that are inherited like Multiple Endocrine Neoplasia Type 1 (MEN-1) increases the risk of tumor development in the endocrine system, including the adrenal and pituitary glands. These genetic conditions are, however, rare in causing Cushing Syndrome. 
  • Obesity and the development of Type II Diabetes or those who have poorly regulated blood glucose levels are at a greater risk of developing Cushing Syndrome. 

Cushing Syndrome may develop in any person. However, it is more frequently seen in adults between 20 and 50 years of age, and women are three times more likely to develop the condition than men. An estimated two new cases per million people are diagnosed every year.  

Signs and Symptoms of Cushing Syndrome 

The multiple signs and symptoms of Cushing Syndrome may vary but commonly include: 

  • Central obesity or obesity in the torso with thinner arms and legs. 
  • “Moon face” or the appearance of a large, rounded face. 
  • “Buffalo hump,” which refers to excessive fat in the neck and shoulder area. 
  • Excessive urination and thirst. 
  • Vision conditions, such as glaucoma and cataracts. 
  • Greater susceptibility to infection. 
  • Thin, fragile skin that heals slowly and is prone to bruising. 
  • Pink streaks, like stretch marks in the abdomen, buttocks, and thighs. 
  • Weakness of the muscles. 
  • Reduced endurance. 
  • Decreased bone density or osteoporosis. 
  • Mental health conditions, such as confusion and psychosis. 
  • Children who have Cushing Syndrome develop slower than normal, are shorter in height, and are commonly obese. 
  • Women may grow excess hair on the face and chest and have irregular menstruation. 
  • Men may be impotent or lack sex drive. 

Laboratory Testing for Cushing Syndrome 

A single laboratory test is insufficient to diagnose Cushing Syndrome, and more than one test is the standard. Cortisol levels vary throughout the day, meaning that a singular blood sample for cortisol is not accurate. Testing is, therefore, conducted in two stages. Initial testing is to determine whether increased levels of cortisol are present. The second phase of testing is to identify the cause of the increase in cortisol levels, whether this is due to adrenal, pituitary, or other causes.

Three tests are commonly used to diagnose Cushing Syndrome: 

  • Measurement of midnight plasma cortisol and late-night salivary cortisol. Commonly, cortisol production is reduced at midnight. With Cushing Syndrome, this does not happen, and an increased cortisol level in the blood or plasma at this time may indicate the condition. The blood test usually requires admission to the hospital for at least one night. The alternative is to collect a saliva sample at home, late at night, to be submitted for later testing. The recommendation is for saliva samples to be collected over three consecutive nights. In the case where a single saliva sample was tested, and the results are outside the established range of reference, the test should be repeated in order to eliminate a false-positive. 
  • 24-Hour urine cortisol test (or the urine free cortisol test or UFC) is generally performed to measure overall cortisol production. When one out of four samples tested within a 24-hour period is normal, or the overall results are abnormal, further testing may be required, such as the midnight plasma cortisol test in order to prevent a false-positive. 
  • Dexamethasone suppression screening test (DSS test) which introduces synthetic cortisol to evaluate the production of CRH and ACTH production. The normal response to the introduction of dexamethasone would be a suppression of the hormones CRH, ACTH, and cortisol. The test can be administered in different dosage at various times of the day.  

A low dose of 1mg can be administered at night in order to reduce the increase of ACTH and cortisol that are normally produced during sleep. A blood sample drawn the morning after will then be measured to detect cortisol levels. Cushing syndrome will prevent the suppression of this production, whereas healthy individuals will show a marked suppression in the production of ACTH and cortisol. 

Alternatively, 0.5mg can be administered every six hours over a period of 48 hours and a 24-hour urine sample collected on the second day for urine free cortisol testing. The urine free cortisol test should show suppression to extremely low levels in healthy individuals and high levels in persons with Cushing Syndrome. 

If any of the above tests show increased levels of cortisol, then it is a clear indication that cortisol levels are not being regulated normally. The second phase of testing to determine the cause of the increased levels of cortisol will then be ordered. 

Testing to Establish the Cause of Cushing Syndrome:

  • Corticotrophin releasing hormone (CRH) stimulation test is used to distinguish between individuals who have a pituitary gland condition and those with tumors existing outside of the pituitary gland and are responsible for producing ectopic ACTH. Baseline ACTH levels are measured before CRH is injected. Cortisol and ACTH levels are then measured at either 30 minutes or 1-hour timed intervals. Normal responses to this test should first show an increase in ACTH levels and then a peak in cortisol levels. Cushing Syndrome caused by adrenal tumors or tumors producing ACTH will show no response to the injected CRH. 
  • High-dose dexamethasone suppression test (HDDST) is like the lower dose version used to detect irregular cortisol levels in the initial phase of testing. The test is administered to distinguish between pituitary tumors producing ACTH and the other causes of Cushing Syndrome. The high dose of dexamethasone should suppress cortisol levels in those with pituitary tumors but not in persons where the cause is a tumor producing ectopic ACTH. 
  • Dexamethasone-corticotropin-releasing hormone test is to differentiate between Cushing Syndrome and pseudo-Cushing syndrome. Pseudo-Cushing Syndrome is where cortisone levels are elevated, but the long-term, progressive symptoms and signs are not in evidence. Excessive alcohol consumption, severe obesity, unmanaged diabetes as well as depression and anxiety can all result in higher cortisol levels, but symptoms such as muscle weakness, osteoporosis, or fragile skin may not be present. The test is a combination of the dexamethasone test and the CRH test mentioned above. Elevated levels of cortisol suggest Cushing Syndrome, whereas levels that do not increase suggest pseudo-Cushing Syndrome. 
  • Petrosal sinus sampling is commonly used in conjunction with the CRH stimulation test. Blood samples are obtained from the petrosal sinuses, which are veins that carry blood from the pituitary gland. The samples are collected from a catheter placed in the neck and used to measure ACTH levels. Cortisol levels are then compared with those of blood that is taken from the forearm. ACTH levels that are higher in the blood obtained from petrosal sinuses are indicative of a pituitary tumor. If the levels are similar in both samples, it indicates that the increased levels of cortisol are caused by a tumor other than on the pituitary gland. 

Additional Lab Tests for Cushing Syndrome 

CBC differential to measure high levels of WBC and a greater number of neutrophils. 

A glucose tolerance test to measure impairment. 

Testing for hypokalemia which is a decreased level of potassium