Methylenetetrahydrofolate Reductase (MTHFR), DNA Mutation Analysis Most Popular

The Methylenetetrahydrofolate Reductase (MTHFR), DNA Mutation Analysis test contains 1 test with 2 biomarkers.

Description: The MTHFR gene is responsible for making Methylenetetrahydrofolate reductase, which is an enzyme that plays an important role in processing amino acids. This test will be used to determine if there is a DNA gene mutation with the MTHFR gene.

Also Known As: MTHFR Factor Test, MTHFR Mutation Test, MTHFR Gene Mutation Test, Methylenetetrahydrofolate Reductase Gene Test, MTHFR Disease Test

Collection Method: Blood Draw

Specimen Type: Whole Blood

Test Preparation: No preparation required

When is a Methylenetetrahydrofolate Reductase DNA Mutation Analysis test ordered?

When a person has excessive homocysteine levels, the MTHFR mutation test may be conducted, especially if the person has a personal or family history of early cardiovascular disease or thrombosis. When a close family has MTHFR gene mutations, it may be ordered, but it isn't always effective if that family member has normal homocysteine levels, and some labs and organizations advise against using it for thrombophilia screening.

What does a Methylenetetrahydrofolate Reductase DNA Mutation Analysis blood test check for?

The DNA code for the MTHFR enzyme is found in the methylenetetrahydrofolate reductase gene. Two of the most common mutations are detected by this test.

Homocystinuria, anencephaly, spina bifida, and other significant genetic illnesses can result from mutations or polymorphisms in the MTHFR gene. The MTHFR enzyme is required for the conversion of one type of B vitamin, folate, into another. It's also involved in the conversion of homocysteine to methionine, a crucial component of many proteins.

Homocysteine levels over normal indicate that the body is not digesting it adequately. A homocystinuria-causing mutation in the MTHFR gene could be one explanation. While there are at least seven different MTHFR mutations seen in persons with homocystinuria, only two DNA sequence variants known as single nucleotide polymorphisms are analyzed. Individuals can inherit one or both of the MTHFR variations, which are C677T and A1298C. These SNPs cause DNA changes that are linked to elevated homocysteine levels in the blood, which may raise the risk of early cardiovascular disease, abnormal blood clot formation, and stroke.

About 5-14 percent of the population in the United States is homozygous for C677T, which means they have two copies of the gene. The frequency varies with ethnicity, with individuals of Mediterranean descent having the highest frequency and those of African ancestry having the lowest.

The C677T variation causes the MTHFR enzyme to be less active and has a lower ability to handle folate and homocysteine. Reduced MTHFR enzyme activity slows down the homocysteine-to-methionine conversion process and can lead to a buildup of homocysteine in the blood when a person has two copies of the MTHFR C677T gene mutation or one copy of MTHFR C677T and one copy of A1298C.

The increase in homocysteine is usually mild to moderate, but the level of MTHFR enzyme activity varies from person to person. Even if a person has two copies of the MTHFR gene, proper folate consumption can "balance out" the effect of the MTHFR mutation, preventing elevated homocysteine levels.

According to some research, excessive levels of homocysteine in the blood may increase the risk of CVD by weakening blood vessel walls and encouraging plaque development and abnormal blood clotting. However, no direct link has been discovered between homocysteine levels and cardiovascular disease or thrombotic risk. See the Homocysteine article for further information.

Lab tests often ordered with a Methylenetetrahydrofolate Reductase DNA Mutation Analysis test:

  • Homocysteine
  • Vitamin B12
  • Folate
  • Lipoprotein Fractionation Ion Mobility
  • Apolipoprotein Evaluation
  • Lipid Panel
  • Factor V Leiden Mutation

Conditions where a Methylenetetrahydrofolate Reductase DNA Mutation Analysis test is recommended:

  • Heart disease
  • Cardiovascular Disease
  • Excessive Clotting Disorders
  • Stroke
  • Neural Tube Defects

How does my health care provider use a Methylenetetrahydrofolate Reductase DNA Mutation Analysis test?

The methylenetetrahydrofolate reductase mutation test is used to discover two mutations in the MTHFR gene that are linked to high homocysteine levels in the blood. It is not a common request.

If a person has a personal or family history of early cardiovascular disease or improper blood clots, this test may be done as a follow-up to a high homocysteine test. It may also be ordered in conjunction with other cardiac risk tests. However, its value in measuring CVD risk has yet to be proven, and some expert guidelines advise against using it for thrombosis screening.

If a person has a close family with known MTHFR genetic mutations, it may be ordered, especially if that person also has high homocysteine levels. The MTHFR C677T and A1298C gene variants are the most common and often tested. If someone in their family has a different mutation, that mutation should be checked.

An MTHFR test may be ordered in conjunction with other hereditary clotting risk tests, such as Factor V Leiden or prothrombin 20210 mutation tests, to assess a person's overall risk of developing dangerous blood clots.

Although the MTHFR mutation test can help establish the reason of high homocysteine levels, the utility of monitoring homocysteine levels is unclear. While some research suggests that high homocysteine levels increase the risk of cardiovascular disease and/or thrombosis, no direct correlation has been demonstrated. The American Heart Association does not suggest routine homocysteine testing as a cardiac risk measure. The American College of Medical Genetics and the College of American Pathologists both advise against testing for the C677T variation, citing its limited value in individuals with blood clots. Furthermore, the use of homocysteine levels to determine the risk of CVD, peripheral vascular disease, and stroke is controversial at this time, as multiple studies have found no benefit or reduction in risk in persons who took folic acid and vitamin B supplements to lower their homocysteine levels.

What do my MTHFR test results mean?

The results are usually reported as negative or positive, with the positive results naming the mutation. Frequently, the results are accompanied by an interpretation.

Only a small fraction of cases of high homocysteine are caused by genetic factors. MTHFR mutations C677T and A1298C are among the most frequent.

If a person has two copies of MTHFR C677T, or one copy of C677T and one copy of A1298C, it's likely that these hereditary mutations are causing or contributing to increased homocysteine levels.

Increased homocysteine levels are not usually linked to two copies of A1298C.

If the MTHFR mutation test results are negative, the C677T and A1298C mutations were not found, and the elevated homocysteine level is most likely attributable to something else. Other, more uncommon MTHFR genetic variants will be missed by standard testing.

MTHFR mutations, as well as other clotting risk factors like Factor V Leiden or PT 20210 mutations, may increase the risk of thrombosis.

We advise having your results reviewed by a licensed medical healthcare professional for proper interpretation of your results.

The following is a list of what is included in the item above. Click the test(s) below to view what biomarkers are measured along with an explanation of what the biomarker is measuring.

Also known as: Methylenetetrahydrofolate Reductase MTHFR DNA Mutation Analysis, MTHFR

Methylenetetrahydrofolate

RESULT

*Process times are an estimate and are not guaranteed. The lab may need additional time due to weather, holidays, confirmation/repeat testing, or equipment maintenance.

Customer Reviews